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Abstract

Liquid MgSiO3 is a model for the Earth’s magma ocean and of remnant melt present near the core–mantle boundary.
Here, models for molten MgSiO3 are computed employing empirical potential molecular dynamics (EPMD) and results
are compared to published results including two EPMD studies and three first-principles molecular dynamics (FPMD) models
and to laboratory data. The EPMD results derived from the Oganov (OG) potential come closest to the density of MgSiO3

liquid at the 1-bar melting point inferred from the melting curve. At higher P, EPMD densities calculated from the OG poten-
tial and FPMD broadly match shock wave studies, with the OG potential yielding the better comparison. Matsui (M) poten-
tial results deviate from other studies above �50 GPa. Overall, results based on the OG potential compare best to
experimental densities over the P–T range of the mantle. Isothermally, upon increasing P the mean coordination numbers
(CN) of oxygen around Si and Mg monotonically increase with pressure. Tetrahedral Si and octahedral Si monotonically
increase and decrease, respectively, whereas pentahedral Si maximizes at 10–20 GPa. Tetrahedral Mg decreases monotonically
as P increases whereas pentahedral, octahedral and higher coordination polyhedra each show similar behavior first increasing
and then decreasing after attaining a maximum; the P of the maximum for each polyhedra type migrates to higher P as the
CN increases. Free oxygen and oxygen with one nearest neighbor of either Si or Mg decreases whereas Si or Mg with two or
three nearest oxygens (i.e., tricluster oxygen) increases with increasing P isothermally. The increase of tricluster oxygen is con-
sistent with spectroscopy on MgSiO3 glass quenched from 2000 K and 0–40 GPa and high-energy X-ray studies constraining
the coordination of O around Mg and around Si at 2300 K and 1 bar. Coordination statistics from FPMD studies for O
around Si and Si around O are in agreement with the EPMD results based on the M and OG potentials. Mg self-diffusivity
is greater than O and Si self-diffusivities for both the M and OG potentials. All D values monotonically decrease with increas-
ing pressure isothermally and all atoms are more diffusive in the M liquid compared to the OG liquid except at T > �5000 K
and P > 100 GPa. Previously published EPMD diffusivities fall between values given by the M and OG potentials, at least up
to 45 GPa. The M liquid is generally less viscous than the OG liquid except at P > �80 GPa. Activation energy and volume
are around 96 kJ/mol and 1.5 cm3/mol, respectively. The FPMD viscosity results at 120 GPa and 4000 and 4500 K are essen-
tially identical to the values from the M and OG potentials. FPMD viscosity results are similar to the OG results for
P < 60 GPa; at higher P, the FPMD viscosities are higher. At 4000 K and 100 GPa the shear viscosity of liquid MgSiO3 is
�0.1 Pa s. More extensive laboratory results are required to better define the thermodynamic, transport and structural prop-
erties of MgSiO3 liquids and for comparison with computational studies.
� 2010 Elsevier Ltd. All rights reserved.

1. INTRODUCTION

The structure, thermodynamic and transport properties
of natural silicate liquids over the pressure (P) and temper-
ature (T) regime of the crust and mantle of Earth and other
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terrestrial planets are pertinent to many outstanding geo-
chemical and geophysical problems. For example, under-
standing mantle dynamics and the tectonic and thermal
evolution of the Earth requires knowledge of the thermody-
namics of melting and the transport properties of magma.
Based on isotopic measurements (Halliday, 2008) and the
dynamics of giant Moon-forming impact (Canup, 2004),
it appears likely that the Earth’s mantle was wholly or
partly molten continuously or transiently during accretion
and immediately following the giant Moon-forming impact.
For Mars, isotopic data from Martian meteorites suggests
that the source region of orthopyroxene cumulate
ALH84001 underwent extensive igneous processing associ-
ated with crystallization of a deep magma ocean (Lapen
et al., 2010). In general, short (�30–80 Myr) accretion times
and the finite probability of giant impact during the latter
stages of accretion favor development of magma oceans
during planet formation. Indeed, magma oceans may be
ubiquitous and there may be many hundreds of millions
or more exoplanets in the Milky Way galaxy alone that un-
dergo a magma ocean stage (Sasselov et al., 2008; Kite
et al., 2009; Valencia and O’Connell, 2009). On Earth, it
is possible that patches of melt remain along portions of
the core–mantle boundary representing the fossil remnants
of a former voluminous terrestrial magma ocean (Thorne
and Garnero, 2004). Indeed, Labrosse et al. (2007) have ar-
gued that a stable layer of dense melt at the base of the
mantle early in the Earth’s history would be an ideal candi-
date for an unsampled geochemical reservoir required by
142Nd/144Nd isotopic data (e.g., Boyet and Carlson,
2005). Today, 4566 million years after the first solar system
materials condensed to commence planetary accretion in
the solar system, a volume of about 30 km3 of basaltic melt
is generated in the upper mantle and emplaced or erupted
each year (White et al., 2006). Magmatism therefore is
and has been a fundamental part of the Earth’s dynamic
plate tectonic recycling process for more than 4.5 Gyr.
Understanding the structure and properties of molten sili-
cates is relevant to understanding Earth evolution and, by
analogy, the parent bodies of the basaltic achondritic mete-
orites, the terrestrial planets of our solar system and possi-
ble terrestrial-type exoplanets around other stars.

Although accurate laboratory studies such as diamond-
cell measurements, sinking sphere viscometry, sound speed
measurements, phase equilibria, spectroscopy, diffusion and
shock wave experiments represent the ultimate standard for
determination of melt properties and structure, the range in
composition, T (2000–5000 K) and P (0–135 GPa) relevant
to multicomponent geological systems is enormous; it is too
costly and time-consuming to study all possible composi-
tions at the required range of state conditions in the labora-
tory. Fortunately, molecular dynamics (MD) simulation is
a well-established and potent tool for investigating the
structure and properties of a broad range of liquid compo-
sitions at many state points. Such results complement
laboratory studies and enable rational extrapolation. In
particular, MD methods can be used to develop thermody-
namic equations of state (EOS) and parametric expressions
for transport properties such as self-diffusivity (D), shear
viscosity (g) and phonon conductivity (k), all extremely

useful in addressing geodynamic problems. Predictions
based on modeling studies can be tested against laboratory
measurements thereby leading to improvements in elec-
tronic structure calculations and empirical potentials
sequentially and iteratively. The ultimate goal is to develop
quantitative models for the properties of multicomponent
silicate liquids spanning the P–T range relevant to terres-
trial planet evolution consistent with experimental and the-
oretical constraints. There has already been success in the
study of silicate liquids using this approach and even a cur-
sory review of the computational literature applicable to
high temperature liquids relevant to geochemical problems
(magma end member compositions and molten iron) over
the past thirty years reveals a rapid expansion in knowledge
with accuracies comparable to experimental studies (e.g.,
Angell et al., 1982; Dempsey and Kawamura, 1984; Angell
et al., 1987; Kubicki and Lasaga, 1990; Rustad et al., 1990;
Della Valle and Andersen, 1992; Rustad et al., 1992; Poole
et al., 1995; Stein and Spera, 1995; Bryce et al., 1998;
Nevins and Spera, 1998; Morgan and Spera, 2001; Alfe
et al., 2002; Stixrude and Karki, 2005; Guillot and Sator,
2007a,b; Lacks et al., 2007; Wan et al, 2007; de Koker
et al., 2008; Ghiorso and Spera, 2009; Ghiorso et al.,
2009; Martin et al., 2009; Nevins et al., 2009; Spera et al.,
2009; Vuilleumier et al., 2009; de Koker, 2010). Research
is accelerating due to the development of increasingly ro-
bust algorithms and the wide availability of computational
engines. A recent review of some developments may be
found in the collection of papers in Wentzcovitch and Stix-
rude (2010). Despite this progress there has been relatively
little focus on direct comparison of FPMD studies to
EPMD studies and of both to laboratory measurements.

The purpose of this study is to review what is known
from both computation and laboratory experiment about
the high temperature–pressure properties and structure of
liquid MgSiO3, an archetypical planetary molten silicate.
Comparisons are made between properties and structures
derived from three FPMD studies and four EPMD studies.
In particular we compare EPMD results of Belonoshko and
Dubrovinsky (1996, hereafter BD) and Lacks et al. (2007,
hereafter LRO) based on potentials each author developed
for the system MgO–SiO2, to our MD results using the
transferable potential of Matsui (1996, 1998 hereafter M)
for the system Na2O–CaO–MgO–Al2O3–SiO2 and the com-
pound-specific potential developed by Oganov et al. (2000,
hereafter OG). These comparisons enable assessment of the
sensitivity of computed properties and structure of MgSiO3

on proposed interatomic pairwise additive potentials. We
also compare the EPMD results to the FPMD studies of
Stixrude and Karki (2005, hereafter SK), Wan et al.
(2007, hereafter WDSC) and Vuilleumier et al. (2009,
hereafter VSG) and then compare all computational studies
to laboratory studies. Hence, we can explicitly evaluate
FPMD calculations against three different EPMD poten-
tials; one tailored to MgSiO3, two for the binary system
MgO–SiO2 and one for the 5-component Na2O–CaO–
MgO–Al2O3–SiO2 system. This comparison informs us
regarding trade-offs between computational effort and qual-
ity of results. Although one may, in general, prefer FPMD
results, an important question is when and at what level of
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approximation are EPMD results useful given the wide
range of relevant compositions that must be studied to de-
velop models applicable to planetary geochemical systems?
We will attempt to address this question in this paper and
show that differences between results from different ‘first-
principle’ studies can be as pronounced as those from
EPMD simulations using alternate potentials. Although
the fact that different methods can produce disparate results
is expected if not well known, there are very few studies
where these differences are made explicit particularly in
the geochemical literature.

2. COMPUTATIONAL METHODS

Before addressing these questions, it is appropriate to
briefly review details of the methods involved in first-princi-
ples and empirical potential molecular dynamics beginning
with FPMD. In first–principles molecular dynamics
(FPMD) the fundamental idea is to compute the forces act-
ing on the nuclei from electronic structure calculations
using, for example, Density Functional Theory (DFT) or
the Hartree–Fock (HF) approach (e.g., Kohn and Sham,
1965; Parr and Yang, 1995; Meyer and Worth, 2003) per-
formed ‘on-the-fly’ as the MD nuclei trajectory unfolds.
The forces derived from the electronic structure are used
with Newton’s equations to generate atomic trajectories
and thence coordination statistics, the equation of state
(EOS), self-diffusivities and other material properties based
on standard prescriptions from macroscopic thermodynam-
ics, statistical mechanics and linear response theory. There
are several different flavors of FPMD with a large and rap-
idly expanding literature. The recent monographs by Marx
and Hutter (2009) and Martin (2004) outline the state-of-
the-art and make comparisons between the different flavors
and approximations noting strengths and weaknesses and
areas where improvements are being made. This is a very
active branch of condensed-matter physics; the applications
to geophysics and geochemistry are myriad. Here we just
mention a few details related to the three FPMD studies
drawn upon in this investigation so that a proper evaluation
of comparisons can be made.

An advantage of FPMD of any flavor is that it is, in
principle, an exact theory of many-body systems; empirical
force fields used in EPMD are not required. Instead, com-
plexity is hidden in the exchange–correlation functional, a
component of the Kohn–Sham energy that forms the basis
of DFT. Unfortunately, the form of this exchange–correla-
tion functional is not known a priori and approximations
must be invoked: a systematic approach for constructing
exchange–correlation functionals of universal application
remains elusive (Cohen et al., 2008). Although simple
approximations often work and give useful results, different
flavors of FPMD can generate different results that can
have an impact on the application of results to answer or
pose geochemical and geophysical problems. Three different
FPMD studies are compared here.

SK implement a method called Born–Oppenheimer
molecular dynamics embodied in the VASP code (Kresse
and Furthmuller, 1996) using an 80 atom (16 formula
units of MgSiO3) system and run duration of 3 ps. In

Born–Oppenheimer MD, the static electronic structure
problem is solved at each MD step for fixed nuclear posi-
tions (clamped nuclei) at each instant of time. The elec-
tronic structure is found by solving the time-independent
Schrödinger equation while propagating the nuclei accord-
ing to classical (Newtonian) mechanics. The total ground
state energy of an interacting system of electrons with clas-
sical nuclei fixed is obtained as the minimum of the Kohn–
Sham energy of DFT. There are two corrections made to
the raw FPMD computed pressure in the work of SK. To
account for the finiteness of the basis function set (energy
cut-off of 400 eV), a temperature-independent but volume-
dependant Pulay correction to FPMD pressure is made.
The magnitude of the Pulay correction is 2 GPa at low pres-
sure (V/Vr = 1) and 5 GPa when V/Vr = 0.5 where Vr is a
reference volume taken as the molar volume of liquid
MgSiO3 at its incongruent ‘melting’ temperature of
1830 K at 1 bar (10�4 GPa). A second ‘empirical’ correction
is also applied by adjusting the pressure +2 GPa uniformly
(at all T). This constant pressure shift is applied to allow the
computed liquid volume to agree with the experimental ref-
erence volume (Oganov et al., 2001; Wentzcovitch et al.,
2004). The need for the empirical correction relates to the
computation of the exchange–correlation energy. A critical
part of the Kohn–Sham functional is the approximation of
this unknown functional. In the simplest case, it is the ex-
change and correlation energy density of an interacting
but homogeneous electron gas at the local density in the
inhomogeneous system. This is the local density approxi-
mation (LDA) and has been called the first rung on
“Jacob’s Ladder” leading upwards to the ‘divine’ functional
(Perdew and Schmidt, 2001; Mattsson, 2002). LDA is asso-
ciated with over binding of the electrons; hence the need for
an empirical correction to the raw FPMD pressure. A good
example of differences that can arise between the LDA and
Generalized Gradient Approximation (GGA) pertinent to
silicates is the computed relative stability of silica poly-
morphs a-quartz and stishovite. LDA predicts stishovite
stable at low pressure whereas GGA (see below) leads to
the correct result: a-quartz with lower energy (i.e., stable)
at ambient pressure compared to stishovite (Hamann,
1996). This example illustrates how the choices one makes
in FPMD can influence the outcome in non-trivial ways.

Both WDSC and VSG implement a different version of
FPMD called Car–Parrinello molecular dynamics (CPMD;
Car and Parrinello, 1985; Marx and Hutter, 2009). In con-
trast to Born–Oppenheimer ‘clamped nuclei’ molecular
dynamics, the Car–Parrinello scheme explicitly involves
solution of a system of coupled equations of motion for
both nuclei and electrons: explicit electronic minimization
at each time step, as in BOMD, is not needed since electron
dynamics are followed in conjunction with the nuclei in
time. After an initial electronic minimization, the fictitious
dynamics of the electrons keeps them at the ground state
corresponding to each new ion (nuclei) configuration. Ionic
forces may be determined for each configuration. The ficti-
tious mass of the electrons is chosen small enough to avoid
a significant energy transfer from ionic to electronic degrees
of freedom, hence to enforce adiabaticity. The small ficti-
tious electron mass requires that the equations of motion
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be integrated using a smaller time step compared to
BOMD. WDSC and VSG both implement CPMD using
DFT in the GGA. In GGA, the undesirable over binding
effects of LDA are reduced. Neither WDSC nor VSG apply
an empirical ‘pressure shift’ correction. A small degree of
under binding is typical of GGA, however, the number of
atoms, plane wave energy cut-off, time step and total run
duration for the CPMD simulations of WDSC and (VSG)
are 80 (100), 410 eV (950 eV), 0.3 fs (0.05 fs) and 10 ps
(5 ps). FPMD of either type (BOMD or CPMD) are com-
putationally taxing and this limits practical calculations to
systems of order 100 atoms followed for 3–8 ps, generally
at the lower end of the range. Calculation of shear viscosity
from linear response theory requires longer runs that are
computationally quite expensive. An example of such a cal-
culation for viscosity of MgSiO3 has recently been given by
Karki and Stixrude (2010). Material properties that depend
on particle statistics or long run durations such as self-dif-
fusivity, shear viscosity, and glass dynamics are less pre-
cisely determined in short runs with small numbers of
particles. Below we compare results of computed properties
of liquid MgSiO3 from these different FPMD studies at the
same or similar state points to illustrate typical differences
that can arise in property values.

An alternative to FPMD is the ‘classical’ molecular
dynamics approach, EPMD. In EPMD, an empirical po-
tential describing the (potential) energy between all atom
pairs is used to compute forces. This effective pairwise-addi-
tive potential is derived a priori and is not part of the MD
simulation per se. Because the electronic structure is not
computed directly, systems with large numbers of particles
(104–106) can be computed for long durations (1–10 ns)
routinely. Potentials are generally developed using experi-
mental data such as volume, compressibility, heat capacity,
etc. to fix the potential parameters. Hybrid methods in
which use is made of DFT calculations that are then param-
eterized to give effective pair potentials can also be used.
Effective potentials include Coulombic, Born and van der
Waals energy terms for all ion pairs. Fractional rather than
integer charges are often used for the ions which improves
the potential over purely ‘ionic’ models based on integer
(valence) charge. The ability to perform EPMD simulations
at many state points means that macroscopic equations of
state (EOS) based on the MD results are precise for a given
potential. This feature facilitates comparison of simulation
and laboratory results that generally are quite spotty in
PVT. Although empirical potentials can include three-body
terms, the justification comes back to fitting experimental
data and is not fundamental, in principle. The fundamental
limitation of EPMD is that empirical or semi-empirical
methods are required to determine effective pair potentials.
Despite these limitations, carefully constructed transferable
empirical potentials applicable for multicomponent silicates
can make useful systematic geological approximations over
relatively large ranges of P and T, as noted below.

The remainder of this paper is organized as follows. In
the next section, the methods and results of EPMD calcula-
tions using the OG and M potentials are presented. Com-
parisons are made for the EOS, coordination statistics,
self-diffusivities and shear viscosities over PT space. These

results are then compared to the EPMD results of BD
and LRO and the FPMD results from SK, WDP and
VSG as well as laboratory results. A final section summa-
rizes what has been learned and steps for future work. A ta-
ble of the many acronyms and abbreviations used in this
paper for the sake of economy is provided in Electronic
Appendix -1 (EA-1).

3. EPMD CALCULATIONS

In this section, a brief summary of the MD calculations
is presented followed by a presentation of results for
EPMD calculations for MgSiO3 using the OG and M
potentials. We will refer to the liquid simulated using the
Matsui potential as the ‘M liquid’ and that based on the
Oganov potential as the ‘OG liquid’ for brevity. A full
description of the code and methods are presented else-
where (Nevins, 2009; Spera et al., 2009). Results using iden-
tical methods for molten NaCl, Mg2SiO4, MgSiO3 and
CaAl2Si2O8 are available elsewhere (Nevins and Spera,
2007; Ghiorso et al., 2009; Martin et al., 2009; Nevins
et al., 2009; Spera et al., 2009) where more technical but
standard details of the methods may be found.

3.1. Potentials

The M potential is a transferable potential derived for
compositions in the system Na2O–CaO–MgO–Al2O3–
SiO2. This potential was devised using experimental molar
volume and compressibility data for 27 natural silicate
phases to set the parameters of the pair potentials. The po-
tential from OG was derived specifically for MgSiO3 com-
position and is based on DFT calculations and semi-
empirical methods utilizing ionization potential, electron
affinity and other chemical properties for O, Mg and Si.
The Buckingham form for the potential energy between
two atoms i and j for both the M and OG potentials is:

V ðrijÞ ¼
qiqje

2

4peorij
þ Aij exp � rij

Bij

� �
� Cij

r6
ij

ð1Þ

where qi, qj are the effective charges of species i and j, rij is the
distance between the pair ij, e is the charge of the electron
(1.60218 � 10�19 C), eo, is the vacuum permittivity
(8.8542 � 10�12 C2 m�1 J�1), Aij and Cij are parameters for
the pair ij describing repulsive and van der Waals attractive
forces, respectively, and Bij is an e-folding length characteriz-
ing the radially-symmetric decay of electron repulsive Born
energy between atom pair ij. Values for the potential param-
eters used in the simulations are collected in Table 1. The
justifications, derivations and parameters of the LRO and
BD potentials are given in the original references. The potential
expression of LRO is identical to Eq. (1); the potential model of
BD includes, in addition to the Buckingham form, a term
accounting for bond ionicity for each atom pair ij via a Morse
potential term (Hofer and Ferreria, 1966; Matsui, 1998).

3.2. Methods

The essence of the MD computation is to compute the
vector sum of all forces acting on each particle. The force
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calculation is broken into long-range and short-range con-
tributions. The simulations are run in the microcanonical
(NEV) ensemble for which the internal energy, number of
atoms and volume (density) are fixed. In fact, N and V
are fixed exactly and the drift of the internal energy away
from a constant value is a measure of the quality of the
computation. Energy is conserved to about one part in
105 during the production run simulations presented below.
Newton’s equations of motion are solved using a time step
of 1 femtosecond (1 fs). Atom trajectories (position and
velocity) of all particles are determined (50 picoseconds
(ps) for self-diffusion and EOS runs and �5 nanoseconds
(ns) for shear viscosity) according to the sum of pair poten-
tial forces. Periodic boundary conditions are used with the
minimum image convention. The short-range cut-off used
in all production simulations is 0.8 nm. The Coulombic
long-range calculation is done using a particle–particle
Ewald mesh which scales computationally as N log N and
hence allows large particle-number systems to be studied.
The simulation is broken into a pre-production and pro-
duction phase. Once thermal equilibrium is achieved, a pro-
duction simulation of 50 ps is made at the specified density
and target temperature. Each production run is verified for
equilibrium by comparing the average temperature of the
initial and the final 10 ps of the 50 ps production run which
should be identical within rT, the one-sigma temperature
fluctuation of the production simulation. Additional tests
to insure ergodicity based on the mean square displacement
for each atom type have been applied following the meth-
ods previously described (Spera et al., 2009). Fluctuations
in T and P arise due to the finite number of particles (N)
in the system. The magnitudes of the fluctuations in temper-
ature (rT) and pressure (rP) vary as N�1/2 where N is the
total number of atoms used in the simulation (McQuarrie,
2000). There is, therefore, an inherent uncertainty in any

ensemble-averaged computed property (e.g., diffusivity,
isochoric heat capacity, compressibility, shear viscosity)
related to the fluctuations in state point PT coordinates.
All EPMD simulations performed in this study are for
8000 atom systems (N = 8000); typical temperature and
pressure fluctuations are rT = ±30 K and rP = ±0.30 GPa,
respectively. Fluctuations for a 1000 or 500 particle simula-
tion would be greater by factors of 2.8 (±85 K, ±0.85 GPa,)
and 4 (±120 K, ±1.2 GPa), respectively, and introduce
more ambiguity in equations of state and transport prop-
erty parameterizations. This intrinsic uncertainty should
be kept in mind when evaluating results from MD compu-
tations. For a given potential, the precision of the EOS and
other material property values therefore depends on the
number of atoms considered in the simulation since at fixed
density the implied T and P are known with uncertainties of
rT and rP, respectively.

4. RESULTS

4.1. Equation of state and thermodynamic properties

One hundred fifty-eight EPMD simulations (76 for the
OG liquid and 82 for the M liquid) of equilibrium or meta-
stable MgSiO3 liquid have been carried out along 18 isoch-
ores spanning the density range 1900–5300 kg/m3. Because
glass is a non-equilibrium material we avoid state points
within the glass field; our interests are strictly on equilibrium
or metastable liquids, in this study. Pressure and tempera-
ture span the range, �0.88 to 231 GPa and 2507–5121 K,
respectively. In Electronic Annex-1 (EA-1) and Electronic
Annex-2 (EA-2) primary results are tabulated. For each
state point simulation, the mean simulation temperature
(T), simulation temperature fluctuation (rT), mean
simulation pressure (P), simulation pressure fluctuation

Table 1
Parameters defining the potential of Eq. (1) used in the effective pair-potential MD simulations in this study for molten MgSiO3.

Pair potential parameter Oganov et al. (2000) Matsui (1996) Units
qSi = +2.9043 qSi = +1.89
qO = �1.6049 qO = �0.945
qMg = +1.9104 qMg = +0.945

ASi–Si 0 8.863704 � 1010 kJ/mol
BSi–Si 0 4.600000 � 10�3 nm
CSi–Si 0 4.257630 � 10�2 kJ nm6/mol
ASi–O 1.097039 � 105 4.840101 � 106 kJ/mol
BSi–O 0.02827 1.610000 � 10�2 nm
CSi–O 0 7.825226 � 10�2 kJ nm6/mol
ASi–Mg 0 6.214048 � 1011 kJ/mol
BSi–Mg 0 6.300000 � 10�3 nm
CSi–Mg 0 2.508805 � 10�2 kJ nm6/mol
AMg–Mg 0 1.986688 � 1010 kJ/mol
BMg–Mg 0 8.000000 � 10�3 nm
CMg–Mg 0 1.478312 � 10�2 kJ nm6/mol
AMgO 1.004808 � 105 3.141607 � 106 kJ/mol
BMgO 0.02866 0.00178 nm
CMgO 0 4.611011 � 10�2 kJ nm6/mol
AO–O 1.952624 � 105 6.231357 � 105 kJ/mol
BO–O 0.02674 0.02760 nm
CO–O 3.189199 � 10�4 0.1438223 kJ nm6/mol
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(rp), internal energy (E), kinetic energy (EK), potential en-
ergy (EP) and self-diffusivity for Mg, Si, and O are provided.
These data are the primary information used to calibrate the
EOS and compute Arrhenian self-diffusion parameters (acti-
vation energy, activation volume and pre-exponential
constants).

Computed values of EP versus T3/5 are shown in Fig. 1
for the M and OG liquids. Color versions of all the figures
in this paper are given in Electronic Appendix-3 (EA-3).
The observed linear relationship for virtually all isochores
indicates that the scaling hypothesis of Rosenfeld and Tara-
zona (1998, hereafter RT98)

EP ¼ aðV Þ þ bðV ÞT 3=5 ð2Þ

where a(V) and b(V) are unspecified functions of volume
(V) is closely adhered to. The function a(V) gives the Helm-
holtz free energy at 0 K. Adherence to RT98 scaling has
been demonstrated for a number of silicate liquids, includ-
ing molten SiO2 (Saika-Voivod et al., 2000), Mg2SiO4

(Martin et al., 2009) and CaAl2Si2O8 (Ghiorso et al.,
2009), molten CaMgSi2O6 and 1-bar eutectic liquid in the
system CaMgSi2O6–CaAl2Si2O8 (Martin et al., 2009) and
for FPMD results of SK for MgSiO3 and De Koker
(2010) for liquid CaAl2Si2O8. Both the OG and M liquid
are found to satisfy Eq. (2) along a given isochore to a

precision equivalent to the computed rT . Slopes and inter-
cepts of the scaling relations are reported in Table 2. The
functions aðV Þ and bðV Þ can be fitted from the linear
parameterizations reported in Table 2 by utilizing
techniques outlined in Ghiorso et al. (2009). Polynomial
functions in specific volume are developed from these
parameterizations and are reported in Table 3.

The molar internal energy, the sum of EP and EK where
EK is the kinetic energy associated with atomic vibration
and mobility, is modeled by extending Eq. (2) as

EðV ; T Þ ¼ aðV Þ þ BðV ÞT 3=5 þ 3

2
nRT ð3Þ

where the last term on the RHS is the classical high temper-
ature limit of the molar kinetic energy for MgSiO3 (n = 5).
MD state point results for the OG and M liquid and the
RT98 model results are compared in Fig. 2. The model pro-
vides excellent recovery of the data arrays. From Eq. (3),
the isochoric heat capacity can be calculated:

CV ¼
@E
@T

� �
V

¼ 3

5

bðV Þ
T 2=5

þ 3

2
nR ð4Þ

and compared to the MD simulation values found by finite
differencing of internal energies along isochores. This com-
parison is illustrated in Fig. 3. It should be noted that as
b(V) is always a positive quantity, the RT98 model expres-
sion for CV implies a diminution of the heat capacity with
increasing temperature to the asymptotic classical limit of
(3/2)nR.

In Fig. 4, the q–P coordinates of all state points studied
by MD simulation for the M and OG potentials are shown.
As described in Martin et al. (2009) and Ghiorso et al.
(2009), an equation of state and thermodynamic model
for liquid MgSiO3 can be developed from these data utiliz-
ing the RT98 scaling functions of Table 3 and a parameter-
ization of V–P relations along a reference isotherm.
Following our previous work, we employ the Universal
EOS (Vinet et al., 1986),

P ðT o; V Þ ¼
3Kð1� xÞegð1�xÞ

x2
; g ¼ 3

2
ðK 0 � 1Þ; x ¼ V

V o

� �1=3

ð5Þ

for the reference isotherm. The three parameters of this
EOS, Vo, K and K0, are the zero pressure volume, isother-
mal bulk modulus, and the pressure derivative of the iso-
thermal bulk modulus, for reference temperature To.
Setting To = 4000 K, Universal EOS parameters are opti-
mized from the data array and are reported in Table 4. A
temperature-dependent equation of state (hereafter the
RTU EOS),

P ðV ; T Þ ¼ T
T o

� 1

� �
daðV Þ

dV
þ 5

2
T 3=5 T

T o

� �2=5

� 1

" #
dbðV Þ

dV

þ T
T o

P ðT o; V Þ ð6Þ

is constructed from Eqs. (3) and (5) following Ghiorso et al.
(2009). From the RTU EOS, all derivative and integral
thermodynamic properties may be evaluated, and we will
illustrate many of these model estimates in figures that
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Fig. 1. Demonstration of RT-scaling (Rosenfeld and Tarazona,
1998) for the EPMD data sets computed using the Matsui (1996)
potential (top) and the Oganov et al. (2000) potential (bottom). EP

is the potential energy and T is the temperature. Uncertainties are
within the symbol size. The open circles represent state points
deemed to lie below the computer glass transition (as construed
from the computed self-diffusivity of O being <10�10 m2/s) and
were not included in constructing the RT EOS.
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follow. The smooth curves plotted in Fig. 4 are model pre-
dictions and illustrate the excellent applicability of the RTU
EOS formalism to the OG and M liquid derived state point
arrays.

The locus of points in P–T space along an isochore gives
a measure of the “thermal pressure coefficient,” defined as

@P
@T

� �
V

¼ a
b
¼ aK ð7Þ

where a is the isobaric expansivity, aðP ; T Þ ¼ q�1ð@q
@T ÞP and

b is the isothermal compressibility, bðP ; T Þ ¼ �q�1ð@q
@P ÞT

or equivalently the inverse of the isothermal bulk modulus
(K). Differentiation of Eq. (6) gives an RTU model
expression,

aK ¼ @P
@T

� �
V

¼ 1

T o

daðV Þ
dV

þ 3

2
T�2=5 5

3

T
T o

� �2=5

� 1

" #
dbðV Þ

dV

þ P ðT o; V Þ
T o

ð8Þ

for the thermal pressure coefficient. In Fig. 5 we plot esti-
mates of the thermal pressure coefficient obtained by finite
differencing state points along isochores and compare these

to model estimates. The RTU EOS evidently provides an
excellent representation across the wide P–T range of the
simulations except at the very highest pressures of the M

Table 2
Rosenfeld–Tarazona scaling (U ¼ aþ bT 3=5) for OG and M liquid MgSiO3.

q (g/cm3) Matsui Oganov

b (kJ/g K3/5) a (kJ/g) R2 b (kJ/g K3/5) a (kJ/g) R2

1.900 0.04270 �47.39 0.998263
2.150 0.03885 �47.08 0.999930
2.350 0.03773 �47.14 0.999943 0.04158 �105.87 0.999928
2.490 0.03701 �47.15 0.999951 0.04040 �105.77 0.999991
2.620 0.03663 �47.18 0.999957 0.03912 �105.65 0.999990
2.750 0.03605 �47.18 0.999980 0.03805 �105.55 0.999996
2.870 0.03582 �47.20 0.999986 0.03719 �105.46 0.999986
3.160 0.03517 �47.15 0.999996 0.03587 �105.36 0.999980
3.450 0.03534 �47.10 0.999975 0.03595 �105.40 0.999970
3.754 0.03712 �47.16 0.999891 0.03722 �105.52 a
4.010 0.03998 �47.27 0.999834 0.03910 �105.61 0.999982
4.240 0.04360 �47.41 0.999923 0.04076 �105.57 a
4.469 0.04690 �47.35 0.999891 0.04181 �105.32 0.999971
4.700 0.04949 �47.02 0.999970 0.04290 �104.95 0.999919
4.834 0.05059 �46.69 0.999870 0.04311 �104.60 0.999960
5.000 0.05167 �46.12 0.996511 0.04406 �104.23 0.999995
5.150 0.05392 �45.74 a 0.04415 �103.71 0.999985
5.300 0.05168 �44.52 a 0.04464 �103.20 0.999954

a Fit based on two data points (see Fig. 1).

Table 3
Coefficients for Rosenfeld–Tarazona polynomial functions.

aðV Þ ¼
P6

i¼0civi bðV Þ ¼
P6

i¼0civi

Matsui liquid Oganov liquid Matsui liquid Oganov liquid

c0 323.437 127.116 �0.670324 �0.371466
c1 �6507.31 �3503.98 16.4721 7.09542
c2 46705.6 20724.4 �140.617 �45.7362
c3 �175,474 �60212.0 593.293 139.020
c4 364,151 86060.5 �1337.18 �201.487
c5 �395,989 �48520.4 1546.78 112.513
c6 176,383 �722.930
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Fig. 2. Recovery of internal energy (E) for the Matsui (1996)
potential (top) and Oganov et al. (2000) potential (bottom) EPMD
data sets using the RT EOS model developed in the text.
Uncertainties are within the symbol size. Open circles are defined
in the legend of Fig. 1.
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liquid array. The results plotted in Fig. 5 demonstrate an
important generalization apparent despite the obvious dif-
ferences associated with the two potentials: values of the
thermal pressure coefficient (in the figure depicted as the
spacing between model isotherms) are larger at higher pres-
sure than in the low-pressure regime. This is principally due
to the strong pressure dependence of the bulk modulus
(Fig. 6), which increases by about a factor of 200 over the
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Fig. 3. Recovery of isochoric heat capacity (CV) for the Matsui (1996) potential (red) and Oganov et al. (2000) potential (blue) EPMD data
sets using the RT EOS model developed in the text. Data points are finite difference estimates from the state point arrays and uncertainties are
calculated from error propagation techniques assuming uncorrelated variables. Isotherms are spaced at 500 K intervals over the range 2500–
5000 K. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Recovery of density (q) for the Matsui (1996) potential (red) and Oganov et al. (2000) potential (blue) EPMD data sets using the RT
EOS model developed in the text. Uncertainties are within the state point symbols. Inset reveals the low-pressure region. Open circles are
defined in the legend of Fig. 1. Isotherms are spaced at 500 K intervals over the range 2500–5000 K. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Table 4
Universal EOS parameterizations of MD data along a nominal
4000 K isotherm.

Oganov 4038.1 ± 15.7 K Matsui 4049.2 ± 45.2 K

V 0 0.408031 0.815634
K 13.6262 0.142324
K 0 7.66573 11.7246
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pressure range examined, as contrasted to the isothermal
expansivity (Fig. 7), which diminishes over the same inter-
val by about a factor of four.

Finally, we illustrate in Fig. 8 the pressure variation of
the thermal Grüneisen parameter,

c ¼ aKV
CV

ð9Þ

which varies from �0.25 at zero pressure to a constant va-
lue of �1 at high-pressure for the OG liquid and �1.5 for
the M liquid. It is significant that the thermal Grüneisen

parameter displays little dependence on temperature for
either potential. We will return to this issue in a subsequent
section of this paper.

4.1.1. Comparison of computational and laboratory data for

liquid MgSiO3

Model isotherms summarizing fits to the OG and M MD
simulations are plotted in Fig. 9 along with other estimates
of melt density obtained from previous MD studies and
from laboratory experiments. The MD studies by BD and
LRO are based on empirical force field potentials (EPMD).
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Fig. 5. Recovery of the thermal pressure coefficient (dP/dT)V for the Matsui (1996) potential (red) and Oganov et al. (2000) potential (blue)
EPMD data sets using the RT EOS model developed in the text. Data points are finite difference estimates from state point isochore arrays
and uncertainties are calculated from error propagation techniques assuming uncorrelated variables. Isotherms are spaced at 500 K intervals.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Recovery of the bulk modulus (K) for the Matsui (1996) potential (red) and Oganov et al. (2000) potential (blue) EPMD data sets
using the RT EOS model developed in the text. Data points are finite difference estimates from state point arrays and uncertainties are
calculated from error propagation techniques assuming uncorrelated variables. Isotherms are spaced at 500 K intervals over the range 2500–
5000 K. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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LRO report liquid densities, atomic self-diffusivities, and
viscosities for eight state points at 3000 K. BD do not report
MD simulation data for specific state points, but parameter-
ize their results using a third-order Birch Murnaghan EOS.
We plot three isotherms calculated from their parameteriza-
tion. The Born–Oppenheimer FPMD study by SK provides
18 density–pressure state points along three isotherms (3000,
4000, and 6000 K) up to �150 GPa. These authors make a

‘pressure shift’ empirical correction to computed results by
fixing the density of the liquid at 1830 K to coincide with
a laboratory-based estimate of melt density extrapolated
from the model of Lange and Carmichael (1987). They also
provide estimates of the Grüneisen parameter and liquid
enthalpy over the same T–P range. WDSC report liquid
densities for six state points along a 3500 K isotherm
(88–135 GPa), and density, bulk diffusivity, and viscosity
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Fig. 7. Recovery of the isobaric coefficient of thermal expansion (a) for the Matsui (1996) potential (red) and Oganov et al. (2000) potential
(blue) EPMD data sets using the RT EOS model developed in the text. Data points are finite difference estimates from state point arrays and
uncertainties are calculated from error propagation techniques assuming uncorrelated variables. Isotherms are spaced at 500 K intervals over
the range 2500–5000 K. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 8. Recovery of the thermal Grüneisen parameter (c) for the Matsui (1996) potential (red) and Oganov et al. (2000) potential (blue)
EPMD data sets using the RT EOS model developed in the text. Data points are finite difference estimates from state point arrays and
uncertainties are calculated from error propagation techniques assuming uncorrelated variables. Isotherms are spaced at 500 K intervals over
the range 2500–5000 K. For comparison, estimates of the Grüneisen parameter derived by Stixrude and Karki (2005) with uncertainties are
shown in cyan. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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for four state points (3500–5000 K) along a 120 GPa isobar
from Car–Parrinello FPMD and have not been adjusted by
application of an empirical ‘pressure correction’.

The densities of SK largely coincide (�2% level) with the
M-derived EPMD results at pressures below 50 GPa. At
higher pressures their lower temperature densities are more

in accord with the results obtained from the OG potential,
although the implied thermal pressure coefficient from the
densest isochore of SK is at least a factor of three larger
than that inferred from OG. The 3500 K isotherm of
LRO essentially coincides with the 3000 K isotherm of
SK, whereas the 3500 K isotherm of WDSC is close to
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Fig. 9. Comparison of density (q) estimates from various FP and EPMD studies. (a) The curves plotted for the Oganov et al. (2000) and
Matsui (1996) potentials are RT EOS parameterizations from this study. The Belonoshko and Dubrovinsky (1996) curves are calculated from
their reported EOS. The majenta curves passing through the Stixrude and Karki (2005) state points are obtained by fitting a Universal EOS
(Vinet et al., 1986) along each isotherm, independently. The open majenta symbols represent the Stixrude and Karki (2005) state points with
their empirical 2 GPa pressure adjustment removed so that only the Pulay correction is applied to the “raw” FP q–P results; the empirical
correction is applied so as to artificially bring the MD results into alignment with experimental data at low-pressure. (a) Inset shows the low-
pressure region expanded with three estimates of the density at 1830 K and 1 bar indicated; the Ghiorso and Kress (2004) value and “Fusion
curve” array are based on physical measurements. (b) Detailed comparison of data and model estimates at 3500 K. The interpolation for
Stixrude and Karki (2005) is done by averaging our 3000 and 4000 K Vinet fits to their state points. The dashed curve is shifted 2 GPa to
remove the empirical correction as described in (a) (see text). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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the 6000 K isotherm of SK. The discrepancy may owe its
origin to the different methods used to approximate the ex-
change–correlation functional: GGA was used by WDSC
whereas SK made the local density approximation. SK also
made a correction to compensate for the over binding im-
plicit in use of the LDA. Neither of these pressure correc-
tions (empirical or Pulay) was made by WDSC. The sum
magnitude of the corrections made by SK varies from 4
to 7 GPa depending on pressure. At 3500 K, the difference
in calculated pressure at a density of 4600 kg/m3 between
SK and WDSC is �12 GPa, a factor of 2–3 times bigger
than the corrections. The model isotherms calculated from
BD do not extrapolate to zero pressure in a manner similar
to any other study on MgSiO3 liquid. Both the bulk modu-
lus (inverse slope of the isotherms) and the thermal pressure
coefficient (spacing of the isotherms) are larger than
expected.

At zero pressure the MD results can be compared to
estimates of the density of MgSiO3 liquid obtained from
laboratory experiments. While there are no direct experi-
mental measurements on this liquid, densities can be calcu-
lated from the interpolative scheme of Ghiorso and Kress
(2004). Results at 1830 K (the fusion temperature of ensta-
tite as extrapolated to zero pressure) are compared in the
inset of Fig. 9a to model estimates from M and OG liquids.
The agreement is within 1% of the value of M and 2% of
that of OG. The density of MgSiO3 glass has been esti-
mated at room temperature from Brillouin scattering mea-
surements by Sanchez-Valle and Bass (2010). They obtain a
value of 2.75 g/cm3 at ambient pressure and a maximal va-
lue of 3.5 g/cm3 at �33.5 GPa. The former is broadly con-
sistent with the liquid values (both experimental and MD)
while the latter is significantly lower than any of the liquid
estimates. One explanation for this discrepancy is that the
compression of the glass does not permit the collapse and
reorientation of long-range structures as likely occurs in
the liquid state, thereby making the glass significantly less
compressible at high-pressure when contrasted to the li-
quid. This is consistent with the general observation that
glass, a frozen liquid, generally shares the vibrational and
compressional properties of its corresponding crystalline
polymorph and not that of the liquid. Ghiorso (2004) has
estimated the density of MgSiO3 liquid from analysis of
the enstatite fusion curve. These estimates are plotted as
the heavy solid curve in Fig 9a (inset), with intercept at zero
pressure of 1830 K. The intercept value is about 5% higher
than the number computed from Ghiorso and Kress (2004)
and 3% higher than the estimate from the OG potential. At
�5 GPa, the melting curve lies at �2250 K and climbs to
�2500 K at 10 GPa. The last is consistent with the
2500 K isotherm modeled from the M potential and
broadly consistent with the 3000 K isotherm obtained by
SK. In Fig. 9b density versus pressure is plotted for all mod-
els at 3500 K to facilitate direct comparison. At low P mod-
els generally converge with the difference in calculated
pressure at fixed density within a few GPa. As density in-
creases, the models diverge somewhat. Agreement between
the LRO and OG model is excellent to �50 GPa. The
FPMD model of SK generally falls between the EPMD
OG and M liquids approaching more closely the OG liquid

as P increases. The FPMD studies of SK and WDSC over-
lap for P 2 (88–125 GPa) at 3500 K. From Fig. 9b, the SK and
WDSC predicted pressures at melt density of 4615 kg/m3 differ
by 11 GPa. This pressure difference is larger than the
difference, at the same density and T, between the EPMD
OG liquid and the FPMD SK prediction (DP = 8 GPa)
and about the same (DP = 13 GPa) as the pressure
difference between the FPMD results of WDSC and the
EPMD M liquid. The disagreement between the two
FPMD studies is about the same as between the EPMD
studies. The EPMD study of LRO and OG essentially give
identical results in q–P coordinates, which may be
coincidental.

Estimates of the Grüneisen parameter at 4000 K devel-
oped by SK are plotted and compared to M- and OG-de-
rived potential results in Fig 8. At low-pressures there is
excellent agreement between the FPMD and EPMD OG li-
quid whereas at higher pressures the values trend above
unity and are more in accord with results obtained using
the M potential.

The speed of sound (c) may be calculated for MgSiO3 li-
quid from the identity (Ghiorso and Kress, 2004):

1

c2
¼ q

K
� qT a2

qCV þ KTa2
ð10Þ

Model estimates of sound speed are plotted in Fig 10 and
compared to an extrapolated value from an empirical
model (Ghiorso and Kress, 2004) calibrated on experimen-
tal measurements. The agreement is excellent for results
derived from the OG potential and good for that of M.
The very weak temperature dependence of the modeled
sound speed at low (<30 GPa) pressure is worth noting as
is the fact that the speed of sound increases dramatically
with pressure following the behavior of the bulk modulus.

SK estimate the enthalpy of MgSiO3 liquid at each of
their reported state points; we plot these for the 4000 K iso-
therm in Fig. 11. The reported enthalpies are adjusted to
have zero intercept at zero pressure so that the pressure
dependence of the enthalpy may be compared to similarly
adjusted model values derived from the M and OG liquids
reported in this paper. The adjustment is necessary because
the zero point internal energies deduced from FPMD and
EPMD studies are not known absolutely and depend on
the assumptions inherent to each method/potential. The
model curves plotted in Fig. 11 are calculated from the ther-
modynamic identity H = E + PV. Agreement between the
OG RT EOS model and the SK FPMD estimates is
excellent.

4.1.2. Shock wave data and computational models

A stringent test of computational models for liquid
MgSiO3 is comparison with high compression shock wave
data. Mosenfelder et al. (2009) gives a comprehensive anal-
ysis for the system MgSiO3 utilizing both shock and static
compression experimental data. They review 13 points on
the liquid MgSiO3 Hugoniot with starting materials of
either enstatite crystals (3 shots), porous enstatite (1 shot),
an oxide mix (2 shots) or MgSiO3 glass (7 shots). Restrict-
ing attention to the seven points with glassy MgSiO3

starting material, shock temperature has been measured
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for three shots (Akins et al., 2004; Luo et al., 2004). Mea-
sured shock temperatures, pressures and densities span
the range T 2 (5000–6000 K), P 2 (107–121 GPa) and
q 2 (4885–4978 kg/m3), respectively. For the three cases
where the shock temperature has been measured a compar-
ison can be made to the EPMD predictions of the OG and
M potentials and the Born–Oppenheimer FPMD estimates
of SK. Results are shown in Fig. 12. Of all the models the
OG liquid comes closest to matching the shock wave
experiments, followed closely by SK, although at lower

pressures the M liquid seems to yield the better T–P–q esti-
mates. Where the experimental data points are most secure
(the glass starting material points with known shock tem-
peratures) agreement with predictions based on the OG li-
quid is better than those from SK. This comparison
suggests that results obtained from the OG EPMD simula-
tions may give the best estimates of the density of MgSiO3

liquid in the D00 region of the Earth’s mantle. Unfortu-
nately, due to the limited coverage in PT space of the
FPMD simulations of WDSC and of VSG, construction
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Fig. 10. Model estimates of bulk sound speed (c) calculated for the Oganov et al. (2000, blue) and Matsui (1996, red) potentials compared to a
1-bar estimate based upon physical experiments. Isotherms are spaced at 500 K intervals over the range 2500–5000 K. Note the very weak
temperature dependence of the modeled sound speed, which is in agreement with physical measurements on silicate melts at low-pressure
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of the shock EOS based on CPMD is not possible. Shock
wave data provide a very stringent test of theoretical equa-
tions of state and future modeling studies should pay par-
ticular attention to the shock data. Although we
recognize the large computational costs of FPMD, every ef-
fort should be made to perform calculations at state points
where experimental data exist. Otherwise, application of a
computational model remains inchoate.

4.1.3. Summary of comparisons between proposed equations

of state

A general conclusion drawn from the previous section
is that the EPMD results derived from the OG potential
come closest to estimating the density of MgSiO3 liquid
at the 1-bar melting point as inferred from the model of
Ghiorso and Kress (2004) and from analysis of the T–P
slope of the melting curve (Ghiorso, 2004). While the
low-pressure P–T–q relations of SK correspond closely
to the EPMD estimates derived from the M potential,
SK performed an empirical shift of +2 GPa to pressure
to make their densities correspond to estimates of the
1-bar value calculated from the model of Lange and
Carmichael (1987). The unadjusted (i.e., raw) FPMD den-
sity estimates of SK imply a 1-bar density significantly
higher than that suggested from either Lange and Carmi-
chael (1987), Ghiorso and Kress (2004) or the melting
curve analysis and is a manifestation of the over-binding
implicit in LDA. At higher pressures, corresponding
approximately to the base of the Earth’s mantle, both
the EPMD densities calculated from the OG potential
and the FPMD estimates obtained by SK broadly match
densities inferred from shock wave studies (Mosenfelder
et al., 2009), with the OG potential yielding the better
comparison. Results obtained from the M potential devi-
ate markedly from all other studies above �50 GPa, and
this pressure should be taken as the limit of usefulness

of this parameterization. Overall, the OG potential ap-
pears to give the best results for simulating the density
of MgSiO3 liquid over the pressure–temperature range
characterizing the Earth’s mantle.

4.2. Structure of MgSiO3 liquid

Nearest neighbor distributions encapsulate short- to
medium-range order in a liquid and enable the connection
between melt structure and properties to be rationalized.
Short-range nearest neighbor structure is determined by
statistical analysis of atom locations using partial pair cor-
relation functions (radial distribution functions, RDF)
expressed,

gijðrÞ ¼
V

N 2

XN

i¼1

XN

j¼1;i–j

dðr � rijÞ
* +

ð11Þ

For atoms i and j, Eq (11) provides the normalized aver-
aged distribution of atom j around a central i atom within
a defined cut-off distance. V is the volume of the MD pri-
mary cell and N is the number of particles. The brackets de-
note averaging. Numerical integration of the RDF
determines the coordination number for atom j around
atom i based on locating the distance of the first minimum
in the ij-pair RDF, gij(r), following the first maximum. This
cut-off distance is uniquely determined at each state point.
Here, we focus on a subset of all nearest neighbor statistics,
specifically Mg, Si and O around a central O and of O
around central Si, and Mg atoms at 3000 and 5000 K.
The notation AB[n] is used where n is the number of B atoms
that are nearest neighbors to central atom A. For example,
silicon octahedrally coordinated by oxygen is written SiO[6]

and oxygen coordinated to three nearest Si neighbors form-
ing a tricluster is written OSi[3].
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4.2.1. Coordination statistics at 3000 K

In Fig. 13 coordination statistics at 3000 K are presented
for the OG and M potentials. The color version of Fig. 13
in Electronic Appendix-3 (EA-3) makes structural compar-
isons easier to visualize and the reader is directed there.
Fig. 13a depicts the CN of oxygen around Si. At zero

pressure both the OG and M liquids are dominated by
4-fold Si (90% for M and 70% for OG) that rapidly de-
creases as pressure increases. Pentahedral Si increases and
reaches a maximum of 40% at 30 GPa for M and a maxi-
mum of 50% at 10 GPa for OG. The fraction of octahe-
drally coordinated Si increases monotonically for both M
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Fig. 13. Coordination statistics at 3000 K for the Matsui and Oganov potentials. (a) Coordination number of oxygen around central Si for the
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and OG attaining 25% for M liquid and 50% of the total for
OG liquid at 30 GPa. The main feature is that relative to
M, the OG liquid exhibits a higher concentration of
CN = 5 and CN = 6 species. That is, the mean coordina-
tion number of O around Si (CN) at any pressure is higher
for the OG liquid compared to M liquid as noted from the
dashed curves representing the average coordination num-
ber in Fig. 13a. The coordination of oxygen around Mg
is shown in Fig. 13b. The overall structure is similar to that
of O around Si with an increasing abundance of higher
coordination states with increasing pressure. CN of oxygen
around central Mg is higher than the average coordination
number of O around Si for both the M and OG potentials.
CN varies from �5 (distorted trigonal bipyramidal oxygen
polyhedra) at low pressure to �7.5 at 40 GPa. Structural
changes to higher coordination states occur at slightly high-
er pressures for the OG versus M liquid unlike the behavior
of O around Si where the order is reversed. The coordina-
tion environment of oxygen around oxygen is depicted in
Fig. 13c. At all pressures the OG liquid shows a higher
CN compared to the M liquid. The mean CN number in-
creases rapidly for both M and OG from �10 (for M) or
�11 (for OG) at zero pressure attaining values around 12
(M) or 14 (OG) around 10 GPa. For P > 10 GPa, CN levels
off to around 12 (M liquid) or 15 (OG liquid).

In order to characterize melt polymerization mediated
via metal–oxygen–metal connections it is useful to examine
the coordination statistics of Si and Mg around central O
atoms. In crystalline MgSiO3, 66% of the oxygen has one
nearest Si neighbor (i.e., OSi[1]) and 33% of the oxygen is
tetrahedral bridging oxygen (OSi[2]) with two nearest neigh-
bors of Si. Hence the mean coordination number of oxygen
around Si is 4/3 in crystalline MgSiO3 (enstatite and proto-
enstatite) at low pressure. In Fig. 13d, Si around O statistics
are portrayed. At low pressure both OG and M are domi-
nated by oxygen coordinated by one (55% for M, 45% for
OG) or two (38% for M, 45% for OG) nearest neighbors
of Si giving an average coordination number of 1.3 and
1.4 for the M and OG liquids. A small amount, �8% of
‘free’ oxygen (OSi[0]), that is oxygen with no nearest neigh-
bor of Si, is also present. As pressure increases, the concen-
tration of O with one nearest Si neighbor decreases whereas
the concentration of 2-fold (bridging) and tricluster oxygen
increases. The average coordination number shown on the
right side of Fig. 13 increases from �1.4 at low pressure
for both M and OG to 1.7 (M) or 1.9 (OG) at 30 GPa indi-
cating increasing extent of polymerization as pressure in-
creases isothermally. Finally, the coordination of Mg
around oxygen is shown in Fig. 13e. Both the M and OG
liquid behave similarly with sub equal amounts (�35%) of
oxygen with one or two Mg nearest neighbors and about
15% of tricluster oxygen (oxygen with three nearest neigh-
bors of Mg) and ‘free’ oxygen (i.e., oxygen with no nearest
neighbor of Mg) at low pressure. At 30 GPa, CN � 2:2 for
OG and 2.4 for M exhibiting the increasing tendency to-
wards polymerization as pressure increases.

4.2.2. Coordination statistics at 5000 K

For comparison with the coordination statistics at
3000 K, comparable statistics at 5000 K are presented in

Fig. 14. The pressure range of Fig. 14 is larger by a factor
of three compared to the 3000 K results of Fig. 13 as dic-
tated by the EOS. Differences in coordination statistics be-
tween 3000 and 5000 K are modest compared to the effects
of pressure along an isotherm although there clearly are
some differences. Average CN’s at the same pressure for vir-
tually all atoms are about 10–15% higher at 5000 K com-
pared to 3000 K indicating a more ‘open’ structure as
temperature increases isobarically (cf. Figs. 13a to 14a,
13b to 14b, 13d to 14d and 13e to 14e).

An especially interesting structural change is illustrated
in Fig. 14c depicting the abundance of the oxygen–oxygen
polyhedra (the oxygen ‘superlattice’) with pressure at
5000 K. The average CN of O around O (oxygen polyhe-
dra) is �10 (OG) and �12 (M) at low pressure rapidly
increasing and then flattening to �15 (OG) or �19 (M).
At around 70 GPa the M liquid shows a rapid decrease in
CN to �12. The OG liquid shows similar behavior with
CN decreasing from �15 to �12 near 100 GPa. Evidently,
the oxygen around oxygen mean coordination number is
not a monotonically increasing function of pressure along
an isotherm. At high pressure the oxygen superlattice as-
sumes the form of an (irregular) icosahedron, OO[12], a
structure with an especially high packing efficiency (Tarnai
and Gáspár, 1987; Clare and Kepert, 1991; Kottwitz, 1991).
Both the OG and M liquids approach this asymptotic state
of CN � 12 at high pressure. Leech (1957) observed that
the problem of maximizing the minimum distance between
atoms is equivalent to the case of minimizing the repulsive
potential energy (electron–electron hard core repulsion) of
particles interacting pairwise with the repulsive potential
energy varying as an inverse power of the inter-particle dis-
tance. This is equivalent to finding the polyhedron of equal
sized spheres that maximizes the shortest polyhedra edge
lengths. For N = 2–12 and for N = 24 there are geometric
proofs for the minimum energy configurations. Relatively
high values of the packing density (qp) are observed for
the tetrahedron (N = 4, qp = 0.8453), octahedron (N = 6,
qp = 0.8787), icosahedron (N = 12, qp = 0.8961) and snub
cube (N = 24, qp = 0.8617). This is illustrated in Fig. 15
based on Table 10 in Clare and Kepert (1991). The icosahe-
dron (N = 12) represents a global maximum packing den-
sity consistent with the minimization of the repulsive
potential energy. Our conjecture is that the feature illus-
trated in Fig. 13c, the rapid decrease in the average coordi-
nation number of oxygen by oxygen, is driven by this
energy minimization principle and represents a structural
transition in response to high pressure. As pressure in-
creases and bond distances decrease electron–electron
repulsion between oxygen atoms dominates the energy
landscape and repulsive energy minimization would natu-
rally lead to the oxygen icosahedron (on average). It is sig-
nificant that both potentials (OG and M) exhibit this
structural change in the oxygen ‘superlattice’. As far as
we know, sufficiently detailed and large particle number
FPMD simulations on MgSiO3 have not been carried out
to test this conjecture and we know of no spectroscopic
data that pertains. The other interesting feature of this
structural transition is that it has no discernible effect on
the P–T–q relations (e.g., Fig. 9), implying that there is little
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consequence of this transition expressed in the thermody-
namic properties of MgSiO3 liquid; by contrast, the transi-
tion does have an impact on transport properties as noted
below.

4.2.3. Comparison with experimental and computational

studies

Lee et al. (2008) have probed the local electronic struc-
ture of MgSiO3 glass quenched from the liquid at 1923 K
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by oxygen K-edge X-ray spectroscopy from 0 to 40 GPa.
The pressure dependence of the spectral feature at 545 eV
exhibits a marked step-wise change between 12 and
20 GPa. This feature is due, according to Lee et al., to an
increasing abundance of tricluster oxygens (oxygen coordi-
nated with three Si or OSi[3]) as pressure increases although
they could not quantify the magnitude of the effect in their
study. It is nonetheless noteworthy because examination of
Figs. 13d, 13e, 14d and 14e shows that there is a rapid in-
crease in the sum of OSi[3] and OMg[3] (i.e., total tricluster
oxygen) abundance as pressure increases. The tricluster sum
abundance rises rapidly from small values at low pressure
and approaches higher values �20 GPa at 3000 K and
�40 GPa at 5000 K. Although a definitive quantitative
comparison cannot be made, the EPMD results corrobo-
rate, at least qualitatively, the laboratory findings of Lee
et al. (2008). Increasing tricluster oxygen has implications
for the distribution of REE and other large ion incompati-
ble elements because an increasing abundance of tricluster
oxygen leads to a reduction in the free volume needed to
host incompatible elements (e.g., Corgne et al., 2005) and
may increase solid–liquid partitioning coefficients for large
ion lithophile elements and the rare gasses usually consid-
ered incompatible with small solid–liquid partitioning coef-
ficients in the mantle.

Recently, Wilding et al. (2010) determined the structure
of MgSiO3 liquid and glass at 1 bar using a novel levitation
method and high-energy X-rays. They present experimental
structure factor S(Q) spectra for liquid MgSiO3 at �2300 K
and 10�4 GPa (1 bar) and hence determine coordination
number of O around Mg and O around Si. They find an
average coordination number of O around Si of four iden-
tical to low-pressure results for the M liquid but somewhat

lower than CN of 4.2 for the more ‘disordered’ OG liquid.
Wilding et al. (2010) also report an average coordination
number for oxygen around Mg of �4.5 ± 0.2 at 2300 K
in excellent agreement with our EPMD result of 4.6 for
the M liquid and 4.5 for the OG liquid at 3000 K and
1 bar (Fig. 13b). For comparison, the EPMD results at
5000 K give a CN of O around Mg of �4.2 for both the
M and OG liquid. VSG report oxygen around Mg CN of
5.2 at 1 bar and 2200–2500 K based on CPMD. This is an-
other example where the EPMD result agrees better with
the experimental result than a FPMD calculation.

The coordination statistics for oxygen around Si at
3000 K and 0–50 GPa computed by FPMD (SK) can be
compared to the M and OG liquid EPMD results. In
making this comparison it is important to note that in
the FPMD study 48 oxygen atoms were followed for
2.4 ps whereas in the EPMD results 4800 oxygen atoms
were followed for 50 ps. Fig. 13a compares the O around
Si statistics for the M and OG liquid to the FPMD study
of SK. In general, the SK FPMD abundances of SiO[4],
SiO[5] and SiO[6] lie between those of the OG and M liq-
uids perhaps being closer, on average, to the M liquid.
For example, at 50 GPa, the concentrations of SiO[4],
SiO[5] and SiO[6] from FPMD are 4%, 35% and 61%,
respectively, whereas for the M liquid the corresponding
abundances are 4%, 34% and 58%, respectively (4%
SiO[7] is also present in the M liquid). All results, both
FPMD and EPMD, show the same overall trends upon
increasing pressure of monotonically decreasing tetrahe-
dral Si, a concave down distribution of pentahedral Si
that attains a maximum at some pressure (10 GPa for
OG, 24 GPa for M, 26 GPa for SK) and monotonic in-
crease of octahedrally coordinated Si such that at
50 GPa the abundance of octahedral Si is 75% for OG,
58% for M and 60% for SK. Given the very different
methods and assumptions, the agreement between FPMD
and EPMD predicted structures are reasonable. Without
comprehensive spectroscopic data on the liquid it is
impossible to know which local structure model is closest
to reality.

Finally, we can make a comparison of the populations
of bridging (OSi[2]) and non-bridging (OSi[1]) oxygen abun-
dances at 1 bar between the CPMD calculation of VSG at
2273 K and q = 2490 kg/m3 with N � 100 atoms and the
EPMD simulations for the M and OG liquids at 2500 K
and q = 2490 kg/m3. The FPMD gives OSi[1] = 65.5% and
OSi[2] = 34% whereas the M liquid gives OSi[1] = 55% and
OSi[2] = 39% and the OG liquid gives OSi[1] = 48% and
OSi[2] = 47%. Without experimental spectroscopic data it
is difficult to come to any conclusion regarding relative
accuracies.

4.3. Self-diffusivities of O, Mg and Si

The self-diffusivity of Mg, Si and O is related to the
mean square displacement (MSD), a quantity computed di-
rectly from atom trajectories, by

D ¼ 1

6N kt

XNa

j¼1

½rjðtÞ � rjð0Þ�2
* +

ð12Þ
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Fig. 15. Packing density versus coordination number for the
packing of equal sized sphere around a common center (modified
from Clare and Kepert (1991) Table 10). The local packing
efficiencies for CN = 4 (tetrahedron), CN = 6 (octahedron) and
N = 24 are noted. The icosahedron (a Platonic polyhedron) with
CN = 12 represents a global maximum in packing efficiency,
minimizing the electrostatic repulsive energy of the system. From
Fig. 13c note that both the M and OG fluid approach the
icosahedral packing of CN ¼ 12 for oxygen around a central
oxygen.
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where Na refers to the number of atoms of species k and the
quantity in brackets represents the MSD of the kth atom
type. At each state point, the MSD for a particular atom
is accumulated from the unfolded atom trajectories and a
plot of MSD versus time is made. Following a brief
(<50 fs) ballistic transport regime, the MSD becomes linear;
the slope of the MSD is directly proportional to the self-dif-
fusivity. Self-diffusivities for O, Si and Mg at all state points
for the M and OG potentials are collected in the Electronic
Annex for the M (EA-1) and OG (EA-2) potentials. Repre-
sentative results are depicted at 3000 and 5000 K in Fig. 16

where Dk is plotted versus pressure. MD values are given as
points; the curves are Arrhenian fits to the simulation re-
sults with activation volume a function of P and T accord-
ing to, vA ¼ vD0

þ vD1
P þ vD2

T . This form produces a
superior fit compared to other Arrhenian forms (see Discus-
sion in Spera et al., 2009). The self-diffusivity is a function
of T and P according to

D ¼ D0 exp
�½ED þ ðvD0

þ vD1
P þ vD2

T ÞP �
RT

� �
ð13Þ

where D0, the frequency factor, is the diffusivity in the limit
T ?1, ED is the activation energy for diffusion, vD0

, vD1

and vD2
constants describing the variation of the activation

volume with P and T and R is the universal gas constant.
Parameters for each species obtained from fitting the self-
diffusivity values to Eq. (13) are given in Table 5. Except
for Mg in the M liquid, all activation energies lie in the
range 88–97 kJ/mol. Activation volumes at zero pressure
and 0 K are all positive and, except for oxygen in the OG
liquid, fall in the range 1.56–1.81 cm3/mol. The variation
of activation volume with P and T is very similar for all
atoms for both the M and OG liquids. Increasing P and
increasing T both lead to a decrease in the activation
volume.

In Fig. 16 self-diffusivities for Mg, O and Si at 3000 K
(Fig. 16a) and 5000 K (Fig 16b) are depicted. In coordi-
nates ln D versus P, a liquid with a constant activation vol-
ume yields a linear array, clearly not the case here. At
3000 K self-diffusivities of all atoms are faster for the M li-
quid compared to the OG liquid by factors of 2.6 (Mg), 1.6
(Si) and 1.4 (O). At 3000 K and pressure less than about
3 GPa, the effect of pressure is minimal. We do not observe
a negative activation volume for either the OG or M liquid
except for oxygen at 3000 K in the OG liquid. At 5000 K,
atoms in the M liquid are again more mobile than in the
OG liquid for P < 20 GPa. For P > 20 GPa, Mg and O
are equally mobile (approximately) whereas oxygen be-
comes more mobile in the OG liquid. Activation volume
for all atoms for both M and OG are strictly monotonically
decreasing over the pressure range 0–160 GPa. Agreement
between the OG and M liquid is better at 5000 K compared
to 3000 K; the worst agreement between comparable values
is a factor of 1.8. In most cases the agreement is better espe-
cially for P 2 (50–100) GPa. In summary, both the M and
OG liquids exhibit similar self-diffusion characteristics with
atomic mobility for all atoms greater in the M liquid at any
pressure.

We are not aware of any laboratory values for Mg, Si or
O self-diffusion in liquid or glassy MgSiO3 with which to
compare. We can however compare our results to both the
FPMD results of WDSC and the EPMD results of LRO at
a few state points. WDSC computed from FPMD a self-dif-
fusivity of 3.33 � 10�9 m2/s at 120 GPa and 5000 K valid for
all atoms in liquid MgSiO3 plotted as an inverted triangle in
Fig 16b. In comparison, the MD values for O, Mg and Si for
both potentials (M and OG) bracket the WDSC result and
fall between a maximum of 5.3 � 10�9 m2/s (oxygen in OG
liquid) and a minimum of 2.5 � 10�9 m2/s (Si and oxygen
in OG and M liquid). The agreement with the FPMD result
of WDSC is very good. Finally, we can compare our results
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Fig. 16. Self-diffusion of Mg, O and Si in molten MgSiO3 based on
the Matsui (M) and OG potentials. Raw MD data as points; curves
represent fits according to text Eq. (12). (a) Self-diffusion at 3000 K
as a function of pressure. The M fluid is more mobile than the OG
fluid. Results from the EPMD simulations of LRO are shown for
comparison. Relative to the M fluid at 1 bar, the self-diffusivity of
Mg is 1.3 and 2.6 times smaller, respectively, for the LRO and OG
fluids. Self-diffusivities from OG and M at 3000 K agree to within a
factor of 2.7 or less over the range of studied. Experimental
diffusion data, which would allow us to distinguish the quality of
the three EPMD potentials, do not exist. (b) Self-diffusion at
5000 K as a function of pressure. Agreement between OG and M
self-diffusivities is somewhat better at 5000 K compared to 3000 K.
At 120 GPa, for example, comparable diffusivities agree, at worst,
to a factor of 1.8. In the pressure range 70–90 GPa there is
considerable overlap in self-diffusivities.
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with the EPMD results of LRO who computed self-diffusiv-
ities for Mg, Si and O at 3000 K and pressures in the range
1.5–47 GPa. The results from LRO at 3000 K, determined
by EPMD are plotted in Fig. 16a. The LRO values are com-
parable to the M and OG results, especially at low pressure,
although Si self-diffusion from LRO is everywhere smaller
than either the M or OG liquid. This is probably due to
the use of the BKS force field (van Beest et al., 1990) LRO.
For P > �25 GPa, self-diffusivities of all atoms are smaller
by a factor of 3-compared to the values based on the OG
and M potentials.

Based on these results, we conclude that to within a fac-
tor of �2, all EPMD results are consistent, especially for P
less than �20 GPa. Interestingly, LRO Mg self-diffusivities
are closer to the analogous quantity in the M liquid whereas
for both Si and oxygen LRO values compare more favor-
ably to the OG liquid. Laboratory studies of Mg, O and
Si self-diffusion at elevated T and P are needed for compar-
ison to the broad range of results from extant MD studies
in order to rank the performance of the computational
models.

4.4. Shear viscosity

The shear viscosity is computed using Green–Kubo Lin-
ear Response Theory. Specifically, shear viscosity is deter-
mined by analyzing the temporal decay of the five
independent components (both on and off-diagonal) of
the stress tensor. A discussion of the details and implemen-
tation is provided by Nevins and Spera (2007). The Green–
Kubo (GK) expression for the shear viscosity is found by
integration of the stress (pressure) autocorrelation function.
For example, for the off-diagonal stress components the
expression is

g ¼ V
3kT

Z 1

0

X
x<y

P xyðtÞP xyð0Þ
* +

dt ð14Þ

where g is the shear viscosity, V is the system volume, k is
Boltzmann’s constant, and Pxy refers to the xy component
of the stress. In addition to the off-diagonal components
Pxy, Pxz and Pyz, two normal components (Pxx–Pyy) and
(Pyy–Pzz) are also used to compute the shear viscosity from
the raw MD results. The reported shear viscosity is the
average of the five distinct values and its uncertainty is
the standard deviation of these values. Computed values

of the shear viscosity in the range 3500–4500 K are shown
in Fig. 17 as a function of pressure for the M and OG liq-
uids. Each isotherm is labeled with the actual average sim-
ulation run temperature, which is generally quite close to
the nominal values of 3500, 4000 and 4500 K, respectively.
The simulation T fluctuations (one-sigma) are also given on
the diagram. Points represent the MD values: circles for
nominal 3500 K runs, squares for nominal 4000 K runs
and triangle for a single nominal 4500 K simulation. The
curves represent fits of the OG and M shear viscosities
based on the modified Arrhenian relation,

g ¼ g0 exp
Eg þ ðvg0

þ Pvg1
ÞP

RT

� �
ð15Þ

where Eg is the activation energy for viscous flow and the
activation volume for viscous flow is a function of pressure

Table 5
Arrhenian fit parameters for atomic self-diffusivity of Mg, Si and O for the Matsui (M) and Oganov (OG) potentials. Arrhenian form is Eq.
(13) in text.

Atom D0 (m2/s) ED (kJ/mol) vD0
(cm3/mol) vD1

(cm3/mol GPa) vD2
(cm3/mol K) R2

Matsui potential

Mg 2.60 � 10�7 68.2 1.814 �1.794 � 10�3 �1.346 � 10�4 0.993
Si 2.11 � 10�7 90.6 1.564 �6.356 � 10�4 �1.446 � 10�4 0.991
O 2.52 � 10�7 88.0 1.795 �1.185 � 10�3 �1.495 � 10�4 0.992

Oganov potential

Mg 1.90 � 10�7 87.7 1.777 �3.259 � 10�3 �1.418 � 10�4 0.989
Si 1.47 � 10�7 96.6 1.571 �1.857 � 10�3 �1.511 � 10�4 0.991
O 1.78 � 10�7 90.2 1.017 �1.037 � 10�3 �8.512 � 10�5 0.993
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Fig. 17. Shear viscosity for liquid MgSiO3 based on the Matsui and
Oganov potentials for T at 3500–4500 K as a function of pressure.
Points are raw EPMD data; curves are Arrhenian fit to raw data.
Fit parameters are collected in Table 6. Two points at 120 GPa
from the FPMD study of Wan et al. (2007) are shown in gray. The
4000 K WDSC value (Wan et al., 2007) is consistent with the
Matsui potential whereas the 4500 K WDSC value lies along the
Oganov 4500 K isotherm. Inset expands the low pressure and
includes the experimental data from Urbain et al. (1982). Green
squares show KS (Karki and Stixrude, 2010) FPMD results at
4000 K. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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only, V g ¼ vg0
þ Pvg1

. Calculated fit parameters are gath-
ered in Table 6. Activation energy and volume are similar
for the two potentials: Eg = 98 and 95 kJ/mol and
vg1
¼ 1:51 and 1.38 cm3/mol for the M and OG fluids,

respectively. The main difference is in the pre-exponential
term (go) such that the M liquid is less viscous than the
OG liquid in the limit T ?1 at 0 pressure. This is consis-
tent with the ordering of self-diffusivity between the OG
and M liquids. However, the M liquid becomes stiffer than
the OG liquid at higher P (70–90 GPa depending on T), a
reflection of the greater activation volume of the M liquid.
Differences in predicted shear viscosity between the two
potentials are rather small, generally within a factor of 2
or less with the greatest divergence (not surprisingly) for
P > 100 GPa. At 3500 K, the OG liquid exhibits a viscosity
range from 4.1 � 10�3 Pa s at 1 bar to 0.12 Pa s at 100 GPa
whereas the M liquid varies from 2.2 � 10�3 Pa s at 1 bar to
0.14 Pa s at 100 GPa. At the pressure of the core–mantle
boundary on Earth, the estimated shear viscosity of liquid
MgSiO3 is 0.05 Pa s at 4000 K and 0.028 Pa s at 4500 K
for the OG liquid. These can be compared to the zero pres-
sure values of 0.0027 and 0.0022 Pa s at 4000 and 4500 K,
respectively, for the OG liquid. These values imply a viscos-
ity stratification of about a factor of 10–20 across a whole
mantle Hadean magma ocean.

EPMD results are compared to FPMD results in
Fig. 17. WDSC estimated shear viscosity at 120 GPa and
4000 and 4500 K based on their FPMD self-diffusivities
and the Debye–Einstein–Stokes formula derived by Zwan-
zig (1983). These two points are plotted in Fig. 17. Rather
interestingly, the WDSC point at 4000 K sits on the M
4000 K isotherm and their result at 4500 K lies on the
OG liquid 4500 K isotherm. By any account, the agreement
between the FPMD results of WDSC and the EPMD pre-
dictions is excellent. Recently, Karki and Stixrude (2010)
presented results for shear viscosity based on Born–Oppen-
heimer FPMD for liquid MgSiO3 along the 3000, 4000 and
6000 K isotherms for a range of pressures. The KS 4000 K
data are shown as green squares in Fig. 17 (EA-3). In order
to facilitate comparisons, viscosity values from Karki and
Stixrude (2010) have been fit to the modified Arrhenian
expression of Eq. (15). Fit parameters are given in Table 6.
For P up to �60 GPa, the KS values correspond very well
to the OG liquid points except for one point at 31 GPa.
However, the two highest pressure points from KS, at
82 GPa and 135 GPa, deviate from the OG liquid by factors
of 2.8 and 7, respectively. In summary, we directly compare
shear viscosities at the single state point T = 4000 K and
P = 120 GPa for the OG liquid (0.06 Pa s), the FPMD re-
sult from WDSC (0.10 Pa s), the M liquid (also 0.10 Pa s)
and the FPMD result of KS (0.3 Pa s). Thus, at this single

state point estimates of the shear viscosity vary by a factor
of five. We note that there is closer conformity between the
EPMD predictions of shear viscosity (M and OG) at
4000 K than between the two FPMD studies (WDSC and
KS). Unfortunately, there are no experimental measure-
ments of the shear viscosity of liquid MgSiO3 at high pres-
sure. That is, while models can be compared they cannot be
tested against observation.

Finally, a comparison can be made between 1 bar exper-
imental viscometric data from Urbain et al. (1982) and the
‘computer liquids’ provided the latter are extrapolated to
lower temperature. In Fig. 18 viscosity at 1 bar pressure
for molten MgSiO3 for the M and OG liquids, the FPMD
KS liquid and experimental values from Urbain et al.
(1982) are plotted and compared. Although the raw MD re-
sults do not extend to low T and the Urbain et al. (1982)
measurements are restricted to temperatures below
2270 K, this is the only direct comparison, however imper-
fect, that can be made between experiment and simulation.
The zero pressure Arrhenian Fit parameters for the OG and
M liquids, the FPMD values from KS and the laboratory
data of Urbain et al. (1982) are given in Table 7. For the
FPMD, the VTF viscosity at 1 bar used by Karki and

Table 6
Arrhenian parameters for liquid MgSiO3 shear viscosity for the Matsui (M) and Oganov (OG) potentials and for the FPMD results (19
viscosity values) of Karki and Stixrude (2010). Arrhenian form is Eq. (15) in text.

Potential or Source g0 (Pa s) Eg (kJ/mol) vg0
(cm3/mol) vg1

(cm3/mol GPa) R2

Matsui 7.67 � 10�5 97.9 1.509 �2.264 � 10�3 0.998
Oganov 4.02 � 10�3 95.1 1.375 �4.219 � 10�3 0.993
Karki and Stixrude (2010) 1.34 � 10�4 88.7 2.152 �6.967 � 10�3 0.939
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Fig. 18. Shear viscosity of liquid MgSiO3 at 1 bar and tempera-
tures between 2000 and 5000 K based on EPMD results for the M
(red) and OG (blue) liquids and the FPMD (green) results from
Karki and Stixrude (2010) compared to experimental results
(orange) from Urbain et al. (1982). The experimental results have
been extrapolated to higher T and the computer fluids have been
extrapolated from �3000 K to lower T. The activation energy for
viscous flow (EA) based on laboratory measurements is significantly
higher than that of any computer liquid. (For interpretation of the
references to color in this figure legend, the reader is referred to the
web version of this article.)
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Stixrude (2010), g ¼ 4:31� 10�4 expð5000=ðT � 1000ÞÞ, is
plotted in Fig. 18 rather than the Arrhenian fit based on
their data. There are three main points to be drawn from
examination of Fig. 18 and Table 7: (1) the three computa-
tional models give essentially identical values of the viscous
flow activation energy of 96 ± 2 kJ/mol, (2) this value is
considerably smaller than the experimental value of
�160 kJ/mol and (3) the FPMD KS and EPMD M models
come closest to agreement. The factor of �1.7 difference in
Eg between experiment and models may be due to the rela-
tively small range in T (1987–2268 K) and low mean T for
which laboratory data are available. Specifically, experi-
mental data were collected near 2000 K whereas the com-
puter fluids were studied at T > 3000 K; it is known that
the apparent energy of activation decreases as T increases,
in general. In contrast, the model fluids are fit over a T

range of �3000 K. Alternatively, it could be that the models
systematically underestimate Eg. More experimental studies
of the shear viscosity of liquid MgSiO3 especially at high
pressure and temperature are needed.

5. CONCLUSIONS

MgSiO3-rich perovskite, the most abundant mineral
on Earth, makes up about 70% of the lower mantle. As
a consequence, molten MgSiO3 serves as a first approxi-
mation to the material of the Earth’s Hadean magma
ocean and of silicate liquid that may exist today along
the core–mantle boundary defining an ultra-low velocity
zone (e.g., Xu and Koper, 2009). Because of its planetary
significance, it is important to quantify the thermody-
namic, transport and atomic structure of molten MgSiO3.
Although there have been a number of experimental and
computational studies of liquid MgSiO3, there has not
been a detailed comparative analysis between laboratory
investigations (Raman scattering, high energy X-ray dif-
fraction, fusion curve determination, shock wave EOS)
and computational studies. The primary purpose of this
study has been, therefore, to evaluate the consistency of
extant computational models and to compare results to
laboratory data. We have used both the transferable
empirical pair potential of M and a pair-potential inde-
pendently developed by OG to compute the thermody-
namic and transport properties of MgSiO3 liquid by
MD simulation. Additional published work including
two other EPMD studies and three FPMD studies have
been compared and contrasted with respect to thermody-

namic, transport and structural properties whenever
possible.

Comparisons of theoretical models for MgSiO3 liquid
are hampered by the lack of comprehensive coverage in
P–T space of some studies. For example, a detailed compar-
ison between the three FPMD studies cannot be made since
coverage in P–T space barely overlaps. The VSG study re-
ports information at only 1 bar and one temperature
(�2350 K). Where the FPMD studies of SK and WDSC
do overlap (e.g., at 3500 K for P 2 88–125 GPa) there are
quantitative differences, which may be related to the partic-
ular flavor of FPMD implemented. For example, the SK
and WDSC predicted pressures at melt density 4615 kg/
m3 differ by 11 GPa at 3500 K. This pressure difference is
larger than the difference, at the same q and T, between
the EPMD OG liquid and the FPMD SK prediction
(DP = 8 GPa). Similarly the pressure difference between
the M liquid and the WDSC prediction (at the same density
and T) is 13 GPa. At lower melt densities, agreement be-
tween all five models – the EPMD of LRO, M and OG
and the FPMD model of SK – is better. At a density of
2600 kg/m3, a pressure difference of 4 GPa encompasses
all models (at 3500 K). In comparing only the EPMD mod-
els, the LRO model and the OG model are nearly coinci-
dent (at 3500 K) over the range 0–50 GPa.

A stringent test of computational models for liquid
MgSiO3 is comparison with the shock wave data from
Mosenfelder et al. (2009) especially in those cases where
the shock temperature is measured and the starting material
is appropriate. Restricting attention to three points on the
Hugoniot with glassy (not liquid) MgSiO3 starting material
and for which the shock temperature has been measured a
rough comparison can be made to the EPMD predictions.
Of all the models the OG liquid comes closest to matching
the shock wave experiments with densities in the range
4880–4970 kg/m3 and T 2 (5000–6000 K).

Comparison of model coordination statistics with
high-pressure Raman spectroscopy and container-less high-
energy X-rays is hindered by the lack of sufficient informa-
tion presented in some of the modeling studies as well as
possible differences between liquid and glass structures.
For the two models with sufficient coordination statistics
to make a valid comparison (the OG and M liquids studied
here), agreement between experiment and predictions is
quite good. A comprehensive study of in situ MgSiO3 liquid
at elevated pressures along a high-T isotherm would be
most helpful in resolving differences in model predictions.
Perhaps the most interesting aspect of the coordination sta-
tistics is the prediction of a decrease in the mean oxygen
around oxygen CN around 70 GPa. This feature was found
for both the OG and M liquid and is consistent with a glo-
bal maximum of packing efficiency of oxygen around oxy-
gen corresponding to icosahedral (N = 12) packing. We
suggest that at high pressure, Born repulsion dominates
over other forces and the icosahedral packing arrangement
results because it is the one that minimizes repulsive forces.
It would be interesting to conduct a large particle number
FPMD study to test this conjecture. Spectroscopic
high-pressure data would also be very useful in testing the
icosahedral packing conjecture proposed here.

Table 7
Arrhenian parameters for liquid MgSiO3 at 1 bar (10�4 GPa) from
models and experiments. Models include: EPMD results (M and
OG liquid) and FPMD results (Karki and Stixrude, 2010).
Laboratory results by concentric cylinder viscometry are from
Urbain et al. (1982).

Model or data source g0 (Pa s) Eg (kJ/mol)

EPMD (M liquid) 7.67 � 10�5 97.9
EPMD (OG liquid) 4.02 � 10�3 95.1
FPMD (KS) 1.38 � 10�4 96.6
Experiment (Urbain et al.) 1.38 � 10�5 158.8
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Unfortunately, there are no laboratory results for O, Mg
or Si self-diffusion or for shear viscosity available at ele-
vated T and P for liquid MgSiO3. We can only compare
the various models through overlapping portions of PT
space. On the whole there is a general agreement to within
a factor of three or better. Two comparable state points
from the FPMD study of WDSC essentially match the
EPMD results for shear viscosity. For self-diffusion the val-
ues of LRO generally fall between those from M and OG
except for Si. At 5000 K, a point from WDSC is consistent
with both the OG and M liquid. Once again, accurate
experimental values of D and g at elevated PT are needed
for comparison. For shear viscosity, the FP results of Karki
and Stixrude (2010) generally lie above the EPMD results at
4000 K whereas two points from WDSC fall directly on the
EPMD results at 4000 K and 120 GPa.

A primary conclusion of this study is that there is a des-
perate need for more laboratory measurements on liquid
MgSiO3. In particular measurements of the density of the
liquid along a few isotherms as a function of pressure, of
Mg, O and Si self-diffusivities and of shear viscosity would
enable one to discriminate between computational models.
Better control on the melting curves of MgSiO3 poly-
morphs, especially in the range 20–60 GPa would be very
helpful in constraining the liquid density. Spectroscopic
studies allowing one to deduce O around O, Si around O,
Mg around O and O around Si coordination statistics
would be especially helpful. Without this information it is
very difficult to access the accuracy of the various computa-
tional models. The final words on the properties of liquid
MgSiO3 have not been written.
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