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The accuracy of the Green-Kubo formulation for computing shear 
viscosity from equilibrium Molecular Dynamics simulations depends on 
the quality of the potential used to model the material and on how the 
computation is carried out. We examine the role of the duration of the 
simulation, the number of particles used, and how the correlations are 
accumulated on the accuracy of the shear viscosity. We propose as a 
measure of the accuracy of the computed shear viscosity the standard 
deviation of five independently computed viscosity values based on 
components of the stress tensor. Using this measure, we examine the shear 
viscosity calculation for NaCl to determine the values of the run length, 
window width, and spacing between windows which are a good 
compromise between calculation time and viscosity quality. Significantly 
we note that even though viscosity can be calculated using relatively few 
particles, reducing state point uncertainty requires more, rather than less, 
particles. 
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1. Introduction 
The Green-Kubo (GK) expression for the shear viscosity is given by integration of the 

stress (pressure) autocorrelation function. In particular, the shear viscosity is computed 

according to 
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where η is the shear viscosity, V is the volume of the system, T is the temperature, kB is 

Boltzmann’s constant, and Pxy refers to an independent component of the stress in the xy 

direction. The GK formulation utilizes a single summation that consolidates the 

contributions of all the atoms into a single autocorrelation function                                    

! 

Cxy (t) = Pxy
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This allows the formulation to be used with molecular dynamics simulations whereas 

alternative formulations based on particle displacement require translational invariance, 

an assumption violated in MD simulations utilizing periodic boundary conditions. The 

angle brackets around the summation in equation (2) refer to an average of a ‘sufficiently 

large’ number of samples [1]. The other independent estimates of the shear viscosity that 

are used are the remaining off-diagonal components of the stress .Pxz and Pyz, as well as 

two  

[Insert figure1 about here] 

forms of the first normal difference [2], Pxx - Pyy and Pyy - Pzz. To study the optimal way 

to implement equation (1), it is useful to refer to specific quantities illustrated 

schematically in Figure 1. These quantities include the duration of the MD simulation, tD, 



the time ‘window’ over which the autocorrelation C (t) is computed, tW, and the time 

interval between the start of successive windows, tS. These quantities are related to each 

other and the number of time origins, nO, used in the summation according to 
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where the operation implied by the square brackets returns the integer part of the 

quotient. Since for GK computation of viscosity, tD is of order a few ns, and tW is a few 

ps, nO reduces to   
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In this investigation we determine the dependence of the shear viscosity on tD, tS and 

tW and N, the number of particles used in the simulation, in an effort to deduce the most 

efficient and accurate method for determining the shear viscosity by the GK method from 

equilibrium MD simulations. In order to gauge the effects of simulation duration, window 

width and number of origins on the precision of the viscosity, a measure of the error of 

the viscosity is introduced. We exploit the fact that each of the five independent 

components of the stress (i.e., Pxy, Pxz,Pyz, Pxx - Pyy, and Pyy - Pzz) provides an independent 

estimate of the shear viscosity. We define the fractional error, ξ, as the root mean square 

of the ‘component’ deviations from the average shear viscosity, ηAVE, divided by the 

average viscosity according to  
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 where ηAVE is the arithmetic mean of the five independently determined viscosity 

estimates ηxy, ηxz , ηyz. ηxxyy, and ηyyzz. 

The accuracy of the shear viscosity in the sense of comparison with laboratory values 

depends obviously on the quality of the potential. Here we study molten NaCl because it 

is a simple material for which a reasonably accurate effective pair potential exists. 

Although the point of this investigation is not to find a better description of the pair 

potential applicable to NaCl, it is informative to compare MD computed values with  

laboratory data[3]. The methodology developed in this study is directly applicable to 

determination of shear viscosity in other materials including molten geoliquids at 

conditions of elevated temperature (2000- 5000 K) and pressure  (0-135 GPa) relevant to 

geophysical studies of the Earth’s partially molten interior.  

 

2. Model and simulation parameters 
For this investigation, NaCl was simulated using the potential form 
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This form has been shown to describe the alkali halides quite well [4, 5, 6]. The 

numerical values of the parameters used are given in Table 1. The MD code utilized was 

a modified version of the Large-scale Atomic/Molecular Massively Parallel Simulator 

(LAMMPS) [7].  The pair potential has contributions from Coulombic forces, Born- 

[Insert table1 about here] 

Huggins exponential electron repulsion, dipolar and quadrupolar terms. Long-range 

Coulomb terms were computed using the Particle-Particle Particle-Mesh K-space solver 

with a precision of one part in 10 000. Short-range Coulombic interactions, Born-



Huggins repulsions, and dipolar and quadrupolar forces are calculated directly within a 

0.6 nm (6 Å) radial cutoff in direct space. 

The simulations were carried out in the NEV microcanonical ensemble with the 

numbers of particles ranging from 258 to 25800. Ion positions are updated using the 

leapfrog Verlet scheme with a timestep of 1 femtosecond (fs). Initial conditions were 

developed using the skew-start methodology [8] with an initial temperature distribution 

of 5000 K. Upon removal of net momentum, temperature was held to 5000 K by velocity 

scaling for 10 ps. The system was cooled from 5000 K to the target temperature of 1400 

K using the “slow” cooling schedule (0.5 x 1013 K s-1) adopted by Matsui and Kawamura 

[9]. The liquid was then held at 1400 K for 150 ps to achieve thermal equilibrium by 

velocity scaling. At thermal equilibrium, velocity scaling was turned off and production 

runs of duration tD 2 to 10 ns were carried out. Potential and kinetic energy, temperature, 

isochoric heat capacity and the stress components Pxx, Pyy, Pzz, Pxy, Pxz and Pyz. were 

computed and saved every timestep.  

For N = 25 800 particles (12 900 NaCl ‘molecules’) at 1379.3 kg m-3 and using tD = 2 

ns, tW = 2 ps, and tS of 10 fs, the simulated temperature was 1410 ± 19 K. Pressure was 

197.6 ± 21.0 MPa and the viscosity was computed to be 0.692 mPa s. This compares 

favourably with the laboratory results for NaCl summarized extensively by Janz [3] who 

reports a density of 1377.6 kg m-3 and a viscosity of 0.614 mPa s at 1400 K and 0.1 MPa. 

Our higher computed density is consistent with the higher pressure of the MD simulation 

compared to the laboratory measurement.  



3. Results and discussion 
1. Selection of window width (tW) 
When computing the autocorrelation function C(t),  tW (Figure 1) must be chosen. tW 

should be long enough to capture the decay of C(t) in its entirety but not so long that 

noise is added to the correlation signal by the correlation value doing a random walk 

away from the true value when the noise of the correlation function approaches the 

intrinsic value.  Figure 2 shows a typical autocorrelation C(t)  for [Insert figure2 about 

here] 

the off-diagonal pressure Pxy. C(t) decays rapidly towards zero and after about 1 ps, C(t) 

exhibits small amplitude oscillations around zero. The rate of the descent toward zero 

differs for each of the off-trace pressure C (t) and for each run. We have chosen to cut off 

the contribution of C(t) at the time step where the slowest decaying C(t) functions falls 

below 0.5x10-2. In practice, this value varied from about 0.56 ps to 1.35 ps. In order to 

have a uniform window width, a conservative value of 2 ps seconds is adopted and used 

throughout the rest of this study. 

2. Role of simulation duration (tD) 
To examine the effects of changing run duration tD on computed viscosity, the window 

width (tW) and spacing (tS) were set equal to 2 ps and 0.01 ps, respectively. The number 

of windows and the simulation duration are linked through equation (2) and are not 

independent at fixed tS. Figure 3 shows the variation of ξ, the fractional error defined by 

equation (5) plotted against tD. The average deviation in the tD interval 20-100 ps is ≈ 

25% whereas for the longest simulation duration (10 ns), the deviation is < 5%. 

Simulations of durations of less than ~1.0 ns can have significant changes in the value of 

the viscosity calculated from each autocorrelation and are consequently unsuitable for  



[Insert figure3 about here] 

the determination of viscosity. Alternatively, not much additional reduction in ξ occurs 

for durations greater than about 2 ns, although the computation time increases 

considerably.  The effect of the run duration, tD, is also apparent in the value of the 

average viscosity. As shown in the inset to Figure 3, the average viscosity computed for 

the short duration tD=0.02 ns run does not approach an asymptotic limit like the viscosity 

value computed for tD=10 ns. In summary, the combination of a stable ηAVE combined 

with small ξ suggests a run length of ~2 ns is a good compromise between accuracy and 

computational cost. In terms of nO, the number of origins, tD = 2 ns corresponds to 200 

000 time origins (windows) when the interval between successive windows (tS) is 0.01 

ps. 

3. Role of temporal spacing between time origins (tS) 
In order to test the effect of changing tS, the interval between successive time origins on 

the fractional error ξ, a series of simulations was carried out at constant tD=10 ns. The 

window spacing tS was varied from 1fs to 100 ps. From equation (4) it is clear that at 

const tD, the number of time origins (nO) is not independent of the window spacing, tS. 

[Insert figure4 about here] 

Figure 4 shows that to obtain ξ < 2% the window spacing must be tS smaller than ~100 fs. 

Smaller values do not lead to any reduction in ξ. A value of tS = 10 fs is a good choice to 

maintain a small error, ξ, while minimizing computational time.  

4. Role of system size (particle number) 
It has been claimed [10] that increasing the numbers of particles (N) has no effect on 

improving the quality of the Green-Kubo shear viscosity calculation. We have tested this 



by studying the effect of varying N at fixed values of tD (10 ns), tW (2 ps) and tS (10 fs). 

The relationship between fractional error, ξ and particle number is depicted in Figure 5. 

[Insert figure5 about here] 

Indeed, there is no correlation between N and ξ. N varies by a factor of 100 from N=258 

to 25 800 and there is no systematic improvement (decrease) in ξ.  The same effect is 

seen for the average viscosity; increasing N does give rise to asymptotic behaviour in 

ηAVE. Although tempting to conclude that increasing N has little effect on the computed 

viscosity value, this conclusion is not warranted. The reason is the as follows. It is well 

known [11] that the fluctuations in pressure (σP) and temperature (σT) during a MD  

[Insert figure6 about here] 

simulation (microcanonical ensemble) scale as N-1/2. This is shown in Figure 6 by 

plotting σT/

! 

ˆ T , the temperature fluctuation (σT) divided by the mean temperature 

! 

ˆ T  of the 

run, and the analogous quantity for pressure, 
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ˆ P , against N. It is clear from Figure 6 

that the uncertainty in temperature and pressure of an MD simulation depends on N. For 

example, for N = 500 the temperature and pressure of the simulation are known to within 

3 % and 50 %, respectively. For a simulation carried out at a typical geophysically 

relevant state point of, say, 3500 K and 10 GPa, the uncertainties in temperature and 

pressure are ±100 K and ±4.8 GPa, respectively. In contrast, a simulation with N = 10 

000 at the same state point carries with it an error in temperature and pressure of ±45 K 

and ±1 GPa, respectively. Because there is a one-to-one mapping between a state point 

and the shear viscosity, simulations run with large N are clearly superior than those with 

small N since the uncertainties of the state point are smaller in the former than in the 

latter case.  



5. Conclusions 
Systematic study of implementation of the GK method for determination of the shear 

viscosity reveals the parameters that are most cost-effective. Because each independent 

component of the stress tensor enable one to compute an estimate of the shear viscosity, 

and because these values must, in a real fluid, converge to a single value, one may 

develop a criterion of accuracy based on the convergence of the estimates from the three 

components. Using this metric, we then studied the effect of simulation duration, tD, 

width of the correlation window, tW and the temporal spacing between time origins, tS. 

We find that a set of optimal values that effectively trade off accuracy with computational 

cost are tD = 2ns, tW = 2ps and tS = 10 fs. Although ξ does not depend on N, the number of 

particles in the simulation, the fluctuations in temperature and pressure of the run, and 

hence the uncertainty of the state scale as N-1/2. Hence, a viscosity computed by the GK 

method cannot be reliably placed in the context of material behaviour unless the state 

point is known well. This requires a relatively large number of particles. 
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Figure Captions 
  
Figure 1: Schematic diagram illustrating the relationship between the time intervals used 
to compute the shear viscosity from MD simulation data using the Green-Kubo 
formulation. tD refers to the total duration of the simulation. The autocorrelation functions 
for the stress components Pxy, Pxz,Pyz, Pxx - Pyy, and Pyy - Pzz are each partitioned into 
multiple windows of duration tW and have their origins separated from one another by tS. 
The number of time origins (equal to the number of windows) is given exactly by 
equation (3) and approximately by equation (4). 

 
Figure 2: Off-diagonal stress autocorrelation function 

! 

Cxy (t)  versus time for N = 2580 
particles at 1418 K (±18 K), 202.9 MPa (±46.6 MPa) and density of 1379.3 kg m-3. 

 
Figure 3: Fractional RMS error, ξ and component–averaged shear viscosity, ηAVE for 12 
960 particles (N=12 960) at 1424 K (±17 K), 175.8 MPa (±24.6 MPa) and ρ = 1379.3 kg 
m-3 for simulation durations tD ranging from 0.02 to 10 ns. A simulation duration tD = 2 
ns is a good compromise between accuracy and computational cost. The inset shows that 
asymptotic shear viscosity values are not obtained in short duration experiments. 

 
 

Figure 4: Fractional RMS error, ξ for N= 12 960 at 1424 K (±17 K), 175.8 MPa (±24.6 
MPa) and ρ = 1379.3 kg m-3 versus the number of time origins (nO) or the time spacing, 
tS, between successive time origins used in calculation of the autocorrelation function. At 
least 100000 origins or (tS = 10 fs) are needed to develop adequate statistics for 
determination of shear viscosity. Run duration is tD= 10 ns and window width tW is at 2 
ps.  

 
 

Figure 5: Fractional RMS error, ξ and average shear viscosity as a function of N (particle 
number) at 1399 K (±79 K), 182.4 MPa (±165.7 MPa) and ρ = 1379.3 kg m-3.  
Simulation duration tD = 2 ns, tW = 2 ps and tS= 10 fs for all calculations. Although there 
is no obvious dependence of ξ on N, it should be emphasized that the fluctuation in 
temperature (σT) and pressure (σP) scale as N-1/2. In order to assign a shear viscosity to a 
specific well-known temperature and pressure, large N simulations are required (see 
Figure 6). 

 
Figure 6:  Normalized temperature (σT /

! 

ˆ T ) and pressure (σP /

! 

ˆ P ) fluctuations versus 
particle number, N. In the limit of large N, σT and σP scale as N-1/2. Since one must 
associate a shear viscosity to a specific state point, large N simulations are needed to 
decrease σT and σP to acceptable levels. Although the GK retrieval of shear viscosity 
does not depend explicitly upon N, the uncertainty of the state point T and P clearly do. 

 
 

Table 1: Potential parameters for NaCl used in this study 
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Species Aij 
(x10-7 J mol-1) 

Bij 
(x1011 m) 

Cij 
(x1052 J m6 mol-1) 

Dij 
(x1073 J m8 mol-1) 

Na-Na 4.040947 3.174603 1.011070 4.814617 
Na-Cl 11.948257 3.174603 6.740466 83.653976 
Cl-Cl 33.120536 3.174603 69.811965 1402.257558 

 


