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Abstract

Molecular dynamics simulations have been used to study the structure, equation of state (EOS), 
self-diffusion, and shear viscosity of molten Mg2SiO4 for pressures and temperatures in the range 
2.5–110 GPa and 2100–5060 K, respectively. The transferable pair-potential parameters of Matsui 
(1998) for the system Na2O-CaO-MgO-Al2O-SiO2 have been used accounting for Coulomb, Born, 
and van der Waals forces. Simulations have been carried out in the microcanonical (NEV) ensemble 
at 63 state points along 12 isochores spanning the density range 2754–4500 kg/m3. Thermodynamic 
properties including the isochoric heat capacity, isobaric expansivity, isothermal compressibility, 
thermal pressure, and the Grüneisen parameter (γ) are computed directly from MD results. A density 
crossover between molten Mg2SiO4 and forsterite crystals occurs at ~15 GPa at 2100 K. We find the 
Grüneisen parameter to be a function of temperature (T), increasing with increasing T at low density 
(ρ < 3400 kg/m3) but decreasing as T rises at high density (ρ > 3400 kg/m3); hence, the integrated 
form of the Mie-Grüneisen EOS is only approximately valid for liquid Mg2SiO4 since γ varies by 
~20% over the T range along an isochore. Radial distribution functions for all atoms around all other 
atoms were used to generate coordination statistics as a function of pressure (P) and T. Oxygen about 
Si coordination increases from fourfold coordination at low pressure to sixfold at higher pressure; the 
abundance of distorted trigonal bipyramidal fivefold polyhedra, Si(V) maximizes at 30 GPa at 3500 
K. Interestingly, O about O increases to a maximum of 13 at low P before decreasing with increas-
ing pressure to ~10. The mean coordination number (CN) of Si around oxygen increases from 1.2 to 
1.5 consistent with an increasing abundance of Si2O7 dimers as pressure increases. Self-diffusion of 
Mg, Si, and O was calculated at each state point giving activation energies of 67, 79, and 76 kJ/mol 
and activation volumes of 1.42, 1.10, and 1.32 cm3/mol, respectively. Shear viscosity of the liquid 
calculated at 12 state points using the Green-Kubo formulation provides an excellent Arrhenian fit. 
Viscosity varies by a factor of ~20 (1.5 × 10–3 Pa s to 0.03 Pa s) from 1 to 100 GPa. The validity of 
the Stokes-Einstein and Eyring expressions for atom mobility and shear viscosity is examined in 
detail. Characteristic lengths for atom mobility are consistent with ionic radii to within a factor of 
~1.5–2 for all atoms. An equation of state and thermodynamic model for Mg2SiO4 liquid is developed 
consistent with the fundamental measure functional theory of Rosenfeld and Tarazona (1998). Our 
model reproduces the E-P-V-T relations and the derived thermodynamic properties obtained from the 
MD simulations to within the reported uncertainty.

Keywords: Forsterite liquid, equation of state, molecular dynamics, Grüneisen parameter, struc-
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Introduction

An understanding of the equation of state (EOS), atomic 
structure, and transport properties of molten silicates in geo-
chemical systems is central to many aspects of planetary dy-
namics. Quantitative information bearing on the shear viscosity, 
self-diffusion coefficients, and thermal and ionic conductivities 
of molten silicates, including the relationship between atomic 
level structure and macroscopic property variation with pressure 
(P) and temperature (T), is indispensable in the analysis of geo-
chemical processes. For example, understanding the cooling and 
crystallization of Earth’s early magma ocean requires knowledge 

of the thermodynamic and transport properties of MgO-rich sili-
cate liquids at P and T in the range 0–135 GPa and 2000–6000 
K, respectively. The state of the mantle following magma ocean 
solidification sets the initial conditions for growth and subsequent 
evolution of the lithosphere, continental and oceanic crust, the 
hydrosphere and the atmosphere, and impacts the start of subduc-
tion and the plate tectonic cycle on Earth (e.g., Anderson 2007). 
Because silicate liquids are generally more compressible than 
crystals of the same composition, a density crossover between 
magma and crystals might be anticipated at high pressure. It 
is possible, therefore, that crystalline olivine accumulated in 
a region of neutral buoyancy in the Earth’s primitive magma 
ocean during and immediately following Earth accretion and 
Moon-forming impact. Arguments have been presented for the * E-mail: gbenmartin@umail.ucsb.edu
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presence today of regions of melt along the Earth’s core-mantle 
boundary (Lay et. al 2004). Predictive models for the proper-
ties of multicomponent silicate melts are evidently useful for 
addressing various primary geochemical problems. 

In addition to its importance in geoscience problems, an 
understanding of the amorphous state (liquid and glass), specifi-
cally the relationship between structure, the EOS, and transport 
properties, is of intrinsic interest in its own right. Liquid-liquid 
phase separations in which two liquids of distinct composition 
coexist are common in multicomponent natural systems (e.g., 
Roedder 1951; Philpotts 1976). There is now growing interest 
in a more unusual situation of polyamorphism, a phenomenon 
whereby a one-component system can exist with at least two 
liquid or amorphous phases having the same chemical composi-
tion but distinct densities. Phase transitions between liquids occur 
without change in composition but instead with a change in den-
sity as T or P are varied (Tanaka 2000). Experimental evidence 
for polyamorphism has been found in several systems including 
molten silica, H2O, and binary melts in the system Al2O3-Y2O3 
(Aasland and MacMillan 1994; Senker and Rossler 2001; De-
benedetti 1996). The existence or lack of polyamorphism can 
be predicted from critical point analysis of the thermodynamic 
EOS. Molecular dynamics (MD) simulation has proved to be a 
useful tool for searching for possible liquid-liquid phase transi-
tions in silicate melts (Saika-Voivod et al. 2000; Skibinsky et 
al. 2004). Here we extend this search to molten Mg2SiO4 by 
performing a sufficient number of MD simulations to enable 
accurate derivation of its EOS to assess polyamorphism. Many 
additional aspects of the liquid state remain to be explored. Most 
significant to geochemical systems is the profound reorganization 
of melt structure upon pressure increase. Atomic-level structural 
modifications exert a first-order influence on the melt proper-
ties that, in turn, play important geodynamical roles. A better 
understanding of the liquid state is clearly applicable to many 
important geodynamical issues.

 In this study, the structure and properties of liquid Mg2SiO4 at 
elevated P and T are computed by MD simulation and compared 
to laboratory results. Additionally, the MD-derived data are used 
to build comprehensive expressions for the EOS, internal energy, 
and related thermodynamic properties of liquid Mg2SiO4 and to 
investigate the possibility of a liquid-liquid phase transition. The 
transferable pair-potential model of Matsui (1998) for the system 
Na2O-CaO-MgO-Al2O3-SiO2 is used to study liquid Mg2SiO4 at 
density (ρ), T, and P in the range 2754–4500 kg/m3, 2100–5000 
K, and 2–110 GPa, respectively. The properties of liquid Mg2SiO4 
have been computed at 63 state points along 12 isochores uti-
lizing 50 picoseconds (ps) duration equilibrium or metastable 
liquid MD simulations. A first nearest neighbor analysis of Mg, 
Si, and O as a function of density (pressure) along several iso-
therms is presented. Thermodynamic parameters including the 
isochoric heat capacity, the Grüneisen parameter, the isothermal 
compressibility and isobaric expansivity are presented later at 
all of the state points studied. Self-diffusivities of Mg, Si, and 
O are used to compute activation energies and volumes, and the 
connection between self-diffusion and short-range melt structure 
is elucidated. In addition, 12 “long-duration” MD simulations of 
2 nanoseconds (ns) were made to compute the shear viscosity 
by the Green-Kubo method as a function of temperature and 

pressure. These long-duration simulations enable a test of the 
applicability of the Stokes-Einstein and Eyring relations between 
self-diffusivity of Mg, Si, and O and melt shear viscosity and 
afford a comparison between the activation energy and volumes 
for self-diffusion and viscous flow. 

Molecular dynamics simulations: Potentials 
and computational details

A description of the MD method with details regarding the 
implementation and protocol used in this study may be found 
in Nevins (2009). Here we briefly present relevant details 
pertinent to Mg2SiO4 liquid. The potential used in this study 
is the semi-empirical pair potential of Matsui (1998) for the 
system Na2O-CaO-MgO-Al2O3-SiO2. The functional form of 
the potential includes contributions from long-range Coulombic 
forces, short-range Born-Mayer exponential repulsion and van 
der Waals dipolar attractive forces. The potential between two 
atoms i-j is:
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where εo is the permittivity of free space, rij is the distance be-
tween atoms i and j, qi is the charge of the ith atom, and Aij, Bij, 
and Cij are parameters that quantify the short-range energetics of 
atom pair ij. Figure 1 shows the potential energy as a function of 
interatomic distance (r) for Mg-O, Si-O, and O-O interactions. 
The potential form is radially symmetric and pairwise additive. 
Fractional charges are used in the MD simulations, with qO = 
–0.945, qMg = 0.945, and qSi = 1.89. The parameters used to define 
the potential energy interactions are given in Table 1. Details on 
how the potential was derived may be found in Matsui (1998). 

Molecular dynamics simulations were performed using 
8001 atoms (1143 formula units) in the microcanonical (NEV) 
ensemble. Each MD run followed the same protocol: (1) initial 
positions were configured with atoms in random positions; (2) 
the system was run at a fixed temperature of 10 000 K for 2 ps to 
remove excess energy; (3) the resulting configuration was run for 
2 ps to stabilize following removal of residual net momentum; 
(4) the system was then cooled to the desired temperature using 
velocity scaling for 12 ps; and (5) finally, a 50 ps production 
simulation was carried out on the equilibrium liquid. Steps 2–5 
were run using a timestep of 1 femtosecond (fs). All simulations 
were carried out at fixed volume (density). To verify that thermal 
equilibrium was achieved for each 50 ps production run, the 
average simulation temperature was computed for the first and 
last 10 ps of each 50 ps production run. The two temperature 

Table 1.	 Parameters used to define the potential energy pairwise 
interactions given in text Equation 1 

Atom pair	 A (kJ/mol)	 B (nm)	 C [(kJ·nm6)/mol]
Mg-Mg	 1.70E+09	 0.80	 8.44E-04
Mg-Si	 3.55E+10	 0.63	 1.43E-03
Mg-O	 3.14E+06	 1.78	 2.63E-03
Si-Si	 7.71E+12	 0.46	 2.43E-03
Si-O	 4.84E+06	 1.61	 4.47E-03
O-O	 6.24E+05	 2.76	 8.21E-0
Notes: The values are from Matsui (1998).
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N–1/2 where N is the number of atoms used in the simulation 
(McQuarrie 2000). The N–1/2 scaling implies, for example, that σT 
and σP are four times smaller in a MD simulation of 8000 atoms 
compared to one with 500. Using too small an N introduces unac-
ceptable uncertainties in MD state point coordinates (P and T) 
and directly propagates into uncertainties in thermodynamic and 
transport properties and into structural states defined by nearest 
neighbor coordination statistics. The fluctuations for each run 
are gathered in Table 21; typically, σT is ~25 K and σP is ~0.25 
GPa. These values represent the intrinsic uncertainty to all state 
points in this study given the potential parameters of Table 1. 
Note that these uncertainties are generally smaller than those of 
many laboratory experiments at the conditions of elevated T and 
P explored in this study.

Results

Thermodynamic properties
The essential results for each equilibrium simulation are 

presented in Tables 21 and 31. Figure 2 gives the location in P-T 
coordinates of 63 state points along the 12 isochores studied. 
Because study of phase relations was beyond the scope of this 
paper, we used the fusion curve of Ghiorso (2004) to demon-
strate that most of the state points simulated here were within 
the liquid field determined by other studies. Points below the 
fusion curve are in the metastable liquid range. The isochores 
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Figure 1. Interatomic potentials for Mg-O, Si-O, and O-O pair 
interactions. The form of the potential is given by Equation 1 in text; 
numerical parameters given in Table 1 are from Matsui (1998).

1 Deposit item AM-09-023, Tables 2 and 3 (essential results for 
each equilibrium simulation), and Appendix (thermodynamic 
relations and Equation of State) that includes Appendix Tables 
1, 2, and 3 (data regarding the Rosenfeld-Tarazona functions and 
the Universal EOS) and Appendix Figures 1, 2, and 3. Deposit 
items are available two ways: For a paper copy contact the 
Business Office of the Mineralogical Society of America (see 
inside front cover of recent issue) for price information. For an 
electronic copy visit the MSA web site at http://www.minsocam.
org, go to the American Mineralogist Contents, find the table of 
contents for the specific volume/issue wanted, and then click on 
the deposit link there.
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Figure 2. Location of state points in P-T space investigated by MD 
simulation in this study. State point uncertainties are identical to T and 
P fluctuations of σT ≈ 25 K and σP ≈ 0.25 GPa, respectively. The fusion 
curve of forsterite is from Ghiorso (2004). Most of the simulations are 
in the equilibrium liquid field although a few correspond to metastable 
liquid.

averages were always within the intrinsic temperature fluctuation 
of the specified simulation (σT), in fact usually much closer (3–5 
K). Atom trajectories were saved at 10 fs intervals as was T, P, 
kinetic energy (UK), isochoric heat capacity (CV), and potential 
energy (UP). The fluctuations in temperature (σT) and pressure 
(σP) due to the finite size system were calculated at the end of 
each run. Fluctuation theory informs us that σT and σP scale as 
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Belonoshko and Dubrovinsky (1996; not shown). Within the 
error of the density functional theory (DFT) MD results of de 
Koker et al. (2008), our state points are in agreement at low P, 
and systematically displaced to higher pressures at elevated P. 
All of the MD results shown in Figure 3 are in disagreement with 
the zero pressure volume of Mg2SiO4 liquid inferred from the 
analysis of the fusion curve, as estimated by Ghiorso (2004).

Thermal pressure. The near-linearity of the P-T coordinates 
on Figure 2 implies that the thermal pressure, (∂ρ/∂T)V = α/β 
= αK, where α is the isobaric expansivity, α ≡ –ρ–1(∂ρ/∂T)P, β 
is the isothermal compressibility, β ≡ –ρ–1(∂ρ/∂T)T, and K is the 
bulk modulus, is nearly constant along an isochore. Values of 
the thermal pressure were computed by centered finite difference 
methods at interior points and by backward and forward finite 
difference at the extremes. These values are presented in Table 
31 and illustrated in Figure 4. The thermal pressure varies by 
about a factor of three from ~0.003 GPa/K at low density (2754 
kg/m3) to ~0.01 GPa/K at high density (4500 kg/m3).

Isothermal compressibility and isobaric expansivity. 
Because the temperatures at which simulations were carried out 
along each isochore are the same within the temperature fluctua-
tion, σT, the isothermal compressibility can be estimated at each 
state point. Finite difference methods were used to compute β 
(P,T) at each state point from its definition. Values are collected 
in Table 31. Values decrease along isochores as T and P increase. 
Along a low-density isochore (e.g., ρ = 2754 kg/m3), β decreases 
by a factor ~2 as T and P increase (2100 → 5040 K and 2 → 
11 GPa, respectively) giving an isothermal bulk modulus (K = 
β–1) of ~40 to ~65 GPa. The value of K at high melt density [T 
∈ (3200 → 5053 K), P ∈ (90 → 110 GPa)] is ~470 GPa, 10 
times that of the low-P value. For comparison, the isentropic 
bulk modulus of forsterite crystals at standard temperature and 
pressure (STP) is 128.2 GPa (Poirier 2000).

Combining values of the thermal pressure with those of the 
isothermal compressibility permits computation of the isobaric 
expansivity at each state point. Values of α (P,T) are collected 
in Table 31. The isobaric expansivity is larger at low T and P 
and decrease monotonically along isochores in response to in-
creasing P and T. Values of the expansivity vary from 8 × 10–5 
K–1 to 2.1 × 10–5 K–1 from lowest to highest P-T conditions; a 
typical representative value for liquid Mg2SiO4 is ~4.5 × 10–5 
K–1. In comparison, for forsterite crystals, α = 2.5 × 10–5 K–1 at 
comparable P-T conditions (Poirier 2000). 

Density inversion. Although the density of molten Mg2SiO4 
is less than that of crystalline forsterite at low pressure, the 
compressibility of Mg2SiO4 liquid, like most liquids, exceeds 
that of its crystalline counterpart. This implies the possibility of 
a density inversion at high pressure where the density of forsterite 
is less than the density of liquid of identical composition. In such 
a case, olivine crystals will float in Mg2SiO4 liquid. In Figure 
5, the density of crystalline forsterite based on the Vinet EOS 
determined by Ghiorso (2004) and liquid Mg2SiO4 from the MD 
simulations is shown along several isotherms. Although compar-
ing our model to the Vinet EOS for the crystalline Mg2SiO4 is not 
self-consistent evidence for a density inversion since we have not 
used the Matsui potential to model crystalline forsterite, it does 
nevertheless suggest that a density crossover is a possibility. 

In Figure 5a, at 2100 K, density inversion occurs at ~15 
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calculated from the model developed in the appendix. Isotherms are 
chosen as average temperatures of the simulations.

are very slightly non-parallel implying there is a weak density 
(or pressure) dependence of the thermal pressure (see below). In 
the Appendix1 we develop an EOS and thermodynamic model 
from the U-P-ρ state point data. Below, we evaluate some of the 
important thermodynamic quantities that may be derived from 
the MD simulation results.

The ρ-P-T results are re-plotted in Figure 3 to demonstrate 
the density variation with respect to pressure along the seven 
isotherms studied. These data points are interpolated and ex-
trapolated by the EOS developed in the Appendix1 as shown. 
Our results are offset to higher pressures with respect to the 
empirical potential MD simulations of Lacks et al. (2007) and 
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GPa equivalent to a depth on Earth of 430 km near the top of 
the transition zone region. At higher temperature, the neutral 
buoyancy depth increases; in Figure 5c, for example, at 3585 K 
the neutral buoyancy depth is ~35 GPa. Shock-wave studies of 
liquid Mg2SiO4 conducted by Mosenfelder et al. (2007) imply 
a density inversion at ~16 GPa, although the temperature of the 
shocked liquid was not given by these authors. 

Internal energy. Energies are computed at each time step 
and the average for each run is given in Table 21. The kinetic 
energy of a classical ionic material in the high-temperature limit 
is UK = (3/2) nRT, where R is the universal gas constant, and 
n is the number of atoms in the formula unit (n = 7). The MD-

computed values for UK are within 1% of the classical limiting 
value, and this is not surprising considering the temperatures of 
the simulations.

Isochoric heat capacity and the Grüneisen parameter. The 
CV was computed using centered finite differences to estimate 
the derivative:

 
C E
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Isochoric molar heat capacity values lay between 177 and 225 
J/(mol⋅K) with an average of 200 J/(mol⋅K) over the P-T range 
of the simulations. The mean value can be compared to the 
extrapolated value for the isobaric molar heat capacity of for-
sterite crystals of 206 J/(mol⋅K) (Poirier 2000). Using the heat 
capacity in combination with the isothermal compressibility and 
isobaric expansivity, the Grüneisen parameter (γ) is computed 
from its definition: 

γ
α
β

=
V
CV

.

Values are given in Table 31. Using these values, the validity 
of the empirical power-law expression γ = γo(ρ/ρo)q relating 
the Grüneisen parameter to the melt density (e.g., Birch 1952; 
Anderson 1979; Quareni and Mulargia 1988) can be tested. 
Using simulation MF-1 for reference conditions, the fit gives q 
=1.29 and γo = 0.86 (R2 = 0.96). At STP, forsterite crystals have 
γo = 1.18 for comparison (Anderson 2007). Due mainly to the 
larger compressibility of liquid Mg2SiO4 compared to crystals, 
the reference Grüneisen parameter is somewhat smaller. Our 
values for the Grüneisen parameter fall within the limits of those 
measured for molten Mg2SiO4 by the shockwave experiments 
of Mosenfelder et al. (2007). For example, they found γ values 
~0.4–1.2 at 3000 kg/m3 and 1.4–2 at 4500 kg/m3, whereas our 
results give a range of 0.88–1 and 1.43–1.57, respectively.

Finally, we can test the validity of the Mie-Grüneisen EOS. 
Recall that the thermal pressure is related to γ by the definition:
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Integrating at constant volume and assuming for the mo-
ment that γ is a constant, the Mie-Grüneisen EOS is obtained 
in the form:

P P
V

C dTV
T

T

2 1

1

2

− = ∫
γ .	 (3) 

To apply this form of the Mie-Grüneisen EOS, the product γρ 
must be constant along an isochore. In Figure 6, this quantity is 
plotted vs. pressure. In fact, there is a temperature dependence 
of γρ such that for ρ < 3400 kg/m3, γ increases as T increases, 
whereas for ρ > 3400 kg/m3, the opposite holds. Quantita-
tively, there is a change of circa 15–20% in the product γρ from 
2000–5000 K. This change indicates that the simple form of 
the Mie-Grüneisen EOS is not adequate for modeling the high-
temperature properties of liquid Mg2SiO4. 
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Figure 5. Density inversion, where the crystalline Mg2SiO4 becomes 
less dense than the liquid phase, shown for different temperatures. 
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Melt structure 
Nearest neighbor coordination statistics. Melt structure 

and its variation with density (or pressure) and temperature can 
be investigated by examination of nearest neighbor coordination 
statistics or the coordination number (CN) of the ith type of atom 
around every other type of atom j allowing for i = j. The CN of 
atom i around atom j (atom j is the central atom) is determined 
by first identifying for the pair the value of the radial coordinate 
r of the first minimum following the first maximum of the partial 
radial distribution function (RDF) gij(r). The radial distribution 
function expresses the probability of finding a type i atom in a 
sphere of radius r around a type j atom. Because fluctuations in 
atom position are an intrinsic part of liquid behavior, many atom 
location “snapshots” are averaged to obtain robust CN statistics. 
In this study, approximately 50 000 snapshots are used to define 
the RDF for each CN analysis. The definition of the RDF:

g ( )
d N ( )

d2ij
ijr

r

r

r
=

1
4πρ

	 (4) 

is used to determine Nij(r), average number of i atoms at a dis-
tance between r and r + dr from atom j. Once the distance to 
the first minimum of the RDF is known, the CN is calculated by 
averaging position “snapshots” at 0.5 ps intervals. The averag-
ing intervals were spaced by 0.5 ps to ensure uncorrelated time 
averages. In this way, isothermal plots of the CN vs. P can be 
used to investigate the melt structure as density (or pressure) 
changes along an isotherm. Coordination numbers of Si, Mg, 
and O around a central O, and oxygen coordinated around cen-
tral Si and Mg atoms were determined at each state point and 
are given in Figures 7 and 8 at 3500 and 5000 K as a function 
of pressure. CN statistics are presented as percentages of the 
number fraction.

Oxygen as central atom. By atom number and volume, 
Mg2SiO4 is 57 and 86% oxygen, respectively. It is logical 
therefore to consider the CN values of Si, Mg, and O around 
central O atoms. In Figure 7a, the coordination of Si around 
central oxygen is shown at 3500 and 5000 K as a function of 
pressure. At low pressure, ~60% of the oxygen has one nearest 
Si neighbor, whereas about 20% of the O is “free” oxygen (no 
closest Si neighbors, CN = 0) and 20% of the oxygen has CN 
= 2 with respect to Si. The fraction of “free” oxygen (CN = 0) 
expectedly decreases with increasing pressure. The fraction of 
CN = 0 oxygen is high, indicating a relatively “defect-ridden” 
melt structure consistent with depolymerization. As pressure 
increases, the fraction of non-bridging oxygen (CN = 1) and 
“free” oxygen (CN = 0) decreases, whereas the fraction of oxygen 
with two nearest Si neighbors (CN = 2) increases, as does the 
oxygen of CN = 3. The stoichiometry indicates that as pressure 
increases, free oxygen (CN = 0) combines with two non-linked 
tetrahedra (each with CN = 1) to form a tetrahedral dimer in 
which one oxygen is shared by two Si. At 80 GPa, the fraction 
of dimers is about 40%, in agreement with Sen and Tangeman 
(2008) who used MD simulations of Mg2SiO4 liquid at 2273 
K and the NMR spectrum of 29Si in Mg2SiO4 glass to estimate 
a dimer (Si2O7) fraction of 40%. The number of oxygen with 
three nearest neighbor Si increases from a negligible amount to 
about 10% at 97 GPa. The average CN increases from slightly 
above unity at low pressure to about 1.44 at the highest pressure 
studied. Comparison of results at 3500 and 5000 K indicates that 
temperature exerts a very weak influence on Si around O coor-
dination statistics; pressure is far more important. The computed 
increase in shear viscosity of molten Mg2SiO4 found using the 
Green-Kubo method (see below) is consistent with increased 
polymerization as pressure increases in molten Mg2SiO4.

The coordination of Mg around oxygen is shown in Figure 7b 
at 3500 and 5000 K. At low pressure, the average coordination 
number (CNavg) of Mg around O is ~3; as pressure increases so 
does CNavg to ~3.6. The higher CN for Mg compared to Si around 
oxygen reflects the large size of Mg relative to Si. The steepest 
change in Mg CN occurs in the range 10–30 GPa. Similar to 
Si coordination around O, the effect of increasing temperature 
from 3500 to 5000 K is weak; the pressure dominates over 
temperature and exerts a first-order effect on short-range order 
in molten Mg2SiO4. 

In Figure 7c, the CN of oxygen around oxygen is shown. At 
low pressures, high coordination oxygen polyhedra predomi-
nate; CNavg, is ~11. There is a small but statistically significant 
increase in the fraction of CN = 13 and 14, a correlative decrease 
in CN equal to 9, 10, 11, and 12 near 14 GPa at 3500 K, and 
an analogous but more poorly defined feature at 5000 K. At 
pressures greater than about 50 GPa, the abundance of highly 
coordinated oxygen (CN = 12, 13, and 14) drops off, whereas 
the oxygen coordinated with 9 or 10 oxygen atoms increases in 
concentration at both 3500 and 5000 K, although the effect is 
somewhat muted at 5000 K. 

Silicon and magnesium as central atoms. The coordination 
of oxygen around a central Si gives direct information regarding 
the local state of polymerization of a melt. Figure 8a shows the 
CN of oxygen around a central Si atom at 3500 and 5000 K. At 
relatively low pressure, more than 75% of the Si is tetrahedrally 
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Figure 6. The product of the thermodynamic Grüneisen parameter 
and liquid density (γρ) plotted vs. pressure. The non-zero slopes of the 
MD data arrayed along each isochore show that the simple integrated 
form of the Mie-Grüneisen EOS requiring constancy of γρ is only 
approximately applicable. MD simulation data are shown with estimated 
uncertainties. Curves are calculated from the model developed in 
the appendix. Isotherms are chosen as average temperatures of the 
simulations.
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coordinated with oxygen, the rest mainly in fivefold coordina-
tion defining distorted trigonal bipyramidal polyhedra. There 
is a rapid change in coordination as pressure increases. At ~20 
GPa, the abundances of fourfold and fivefold Si are equal (~45%) 
and 10% of the Si is in octahedral (CN = 6) coordination. The 
abundance of CN = 5 peaks at ~30 GPa; the abundance of CN 
= 5 and 6 are equal (45%) at 43 GPa. At high pressure, the melt 
is dominated by CN = 6 with very little tetrahedral oxygen and 
about 15% CN = 5. There is also about 10% of CN = 7. Trends 
are rather systematic and smooth. These relationships are pre-
served at 5000 K, although distributions are somewhat broader 
than at 3500 K and the CN = 5 to 6 crossover occurs at higher 
pressure, around 60 GPa.

Finally, in Figure 8b the coordination number of oxygen 
around Mg is shown at 3500 and 5000 K. At low pressure, CNavg 

≈ 5.5. As pressure increases the average CN increases (~7.5) near 
100 GPa. Octahedrally coordinated Mg attains a maximum at 
about 20 GPa and decreases systematically as pressure increases. 
The number of seven-coordinated polyhedra maximize at about 
50 GPa, whereas Mg with eight nearest oxygen neighbors at-
tains a maximum at circa 100 GPa. Once again, relations at 
5000 K are quite similar except that abundance distributions 
are somewhat broader.

These observations of the P-T dependence of the CN values 
of Si and Mg are broadly consistent with the DFT MD study of 
de Koker et al. (2008).

Transport properties
Self-diffusivity. Self-diffusion coefficients (D) were 

computed for all runs using accumulated statistics and the 

Figure 7. (a) Si around O coordination statistics along 3583 and 5043 K isotherms. (b) Mg around O coordination statistics along 3583 and 5043 
K isotherms. (c) O around O coordination statistics along 3583 and 5043 K isotherms. The solid thatched line represents the average coordination 
state (CNavg) based on the number fractions.
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where R is the gas constant, E* is the activation energy for dif-
fusion, V o* is the activation volume at zero pressure, and V1* is 
the pressure-derivative of the activation volume for diffusion. 
Values and statistics computed by regression for E*, Do, and 
V* are collected in Table 4. Other parameterizations, such as 
allowing for temperature dependence of the activation volume, 
do not improve the fit. Activation volume depends principally 
on pressure (R2 > 0.98 for Mg, Si, and O). Activation energies 
are in the range 67–79 kJ/mol, with Mg exhibiting the lowest 
activation barrier. The zero pressure activation volume, Vo*, is 
in the range 1.1–1.4 cm3/mol and is largest for Mg and smallest 
for Si; for each GPa of pressure increase the activation volume 
decreases by ~0.005 cm3/mol for Mg and ~0.003 for Si (i.e., 
V1* = –2.6 × 10–3 cm3/mol GPa). The atom with the largest 
zero-pressure activation volume (Mg) also possesses the largest 
pressure-derivative of the activation volume (V1*), an activation 
volume compensation effect.

Shear viscosity. The shear viscosity was calculated at pres-
sures spanning 7–30 GPa and temperatures 3000–4000 K using 
the Green-Kubo formulation following the procedures of Nevins 
and Spera (2007). long simulations, up to 2 ns, were required for 
acquisition of robust statistics. In the Green-Kubo method, the 
temporal decay of the five independent stress auto-correlation 
functions are related to the dynamical relaxation time and hence 
the shear viscosity. Viscosity isotherms are shown in Figure 10. 
The shear viscosity increases with increasing pressure along an 
isotherm and decreases with increasing temperature along an 
isobar. At any temperature, the viscosity increases by a factor 

FiGure 8. (a) Oxygen around Si coordination statistics along 3583 and 5043 K isotherms. (b) Oxygen around Mg coordination statistics along 
3583 and 5043 K isotherms. The solid thatched line represents the average coordination number, CNavg. 

Einstein relation:
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where ri is the position of atom i and Ni is the number of atoms of 
type i. The term in angled brackets, the mean-squared displace-
ment (MSD), is calculated for each state point simulation from 
atom trajectories. These MSD plots are very linear in time; the 
Fickian diffusion coefficient is readily calculated from the slope. 
The very early ballistic part of the MSD (approximately the first 
100 fs) is disregarded in the calculation of D.

Self-diffusivities for Mg, Si, and O at all state points are 
listed in Table 21. Self-diffusivities for all atoms at 3583 K 
for pressure in the range 0–100 GPa are shown in Figure 9. 
Magnesium remains the most mobile species throughout all 
P-T space. Oxygen and Si are the slower diffusers. There is a 
decrease in all diffusivities with increasing pressure along an 
isotherm. The slope in these coordinates is directly related to 
the activation volume.

The MD data are well fit by a modified Arrhenian transport 
model. The expression is:
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of 10 per 70 GPa increase in pressure. Multiple linear regression 
was used to determine the activation energy (Eη*) and activation 
volume (Vη*) for viscous flow. The modified Arrhenian expres-
sion fits the data well. Its form is:

η η η η η=
+ +










o

* * *

exp
( [ ] )

R
o 1

E V V P P

T
	 (7)

quite similar to Equation 6. In general, the activation energies 
and volumes for diffusion and viscous flow are independent. 
The parameters of the fit are given in Table 4. Although some 
work has been done recently on using non-Arrhenain models 
to describe viscosity in silicate melts (e.g., Russell et al. 2003), 
our correlation coefficient of R2 = 0.998 indicates the modified 
Arrhenian form is an excellent model. This is likely due to the 
temperatures of these simulations being well above the glass 
transition temperature. 

Interestingly, the activation energy for viscous flow is 
slightly more than half that for self-diffusion of Mg, Si, and O. 
This observation suggests that cooperative mobility of Mg, Si, 
and O may be important as a viscous flow mechanism. Care-
ful examination of tagged particle dynamics (not attempted in 
this study) is needed to better understand the differences in the 
activation energy for diffusion (E*) and viscous flow (Eη*). In 
contrast, the activation volume for viscous flow is almost equal 
to that for self-diffusion, falling between the comparable values 

for O and Mg. The shear viscosity of molten Mg2SiO4 at 4000 
K increases by a factor of 20 as pressure increases from 1 bar 
(10–4 GPa) to 100 GPa. 

Self-diffusion and viscous flow. Because self-diffusivity 
and shear viscosity are computed independently, the data can be 
used to test the validity of the Stokes-Einstein (SE) and related 
Eyring (EY) relations between self-diffusion, shear viscosity, 
and characteristic size of the mobile species. 

The SE relation relates the mobility of an atom (i.e., Mg, 
Si, or O) to the frictional force exerted on the atom as it dif-
fuses through a continuum medium of viscosity η. The model 
is often used to estimate self-diffusivity when shear viscosity is 
known or vice versa. In the model, the hydrodynamical friction 
factor of a spherical “particle” is f = 6πηa (no slip boundary) 
or f = 4πηa (slip boundary), where a is the radius of the diffus-
ing particle. The friction factor is related to the self-diffusion 
coefficient according to f = kT/D, where k is the Boltzmann 
constant. Equating friction factors gives a relationship between 
melt viscosity, self-diffusivity, and particle size. For a simple SE 
fluid, the expression is:

a kT
=

6π ηD
	 (8a) 

for no slip boundary condition and 

a kT
=

4π ηD
	 (8b) 

when slip conditions prevail. Implicit in the constancy of a in 
Equation 8 is that the P-T dependence of the shear viscosity and 
the self-diffusivity of oxygen precisely offset one another and 
that the size of the diffusing “species” is constant. 

In Figure 11, the Stokes-Einstein characteristic length is 
plotted vs. pressure for Mg, Si, and O at 3000 and 5000 K. If 
the SE expression is valid, then the data should define a trend 
with zero slope and characteristic lengths should approximately 
equal the ionic radii of Mg, Si, or O. In fact, the slopes are near 
zero with very slight dependence upon pressure, agreeing with 
the SE expectation. Comparing isotherms at low and high tem-

 T = 3583 K +/- 46 K

1x10

1x10

1x10

1x10

0 20 40 60 80 100

Pressure (GPa)

2
/s) D

D
D

-7

-8

-9

-10

O

Mg

Si

D
if

fu
si

o
n

 (
m

 /
s)

2

Figure 9. Self-diffusivity for O, Mg, and Si at 3583 K vs. pressure. 
Points represent values derived from MD simulations and curves are 
based on fit using Equation 6 and parameters from Table 4. The non-linear 
slope implies a small pressure-dependence of the activation volume for 
diffusion for all atoms.

Table 4. 	 Parameters for self-diffusivities of O, Mg, and Si are based 
on Equation 5 in text; shear viscosity is based on Equation 6

	 E* (kJ/mol)	 V0* 	 V1* 	 Do (m2/s) 	 R2

		  (cm3/mol)	 [cm3/(mol·GPa)]	 or ηo (Pa s)	

O	 75.636	 1.315	 –3.375E-03	 2.089E-07	 0.988
Mg	 66.530	 1.421	 –5.046E-03	 2.561E-07	 0.988
Si	 79.246	 1.103	 –2.584E-03	 1.739E-07	 0.980
viscosity	 41.018	 1.455	 –4.777E-03	 4.549E-04	 0.998
Notes: Numerical values for E* and V* in the table are given in rational units for 
ease of interpretation. Note that numerical values should be converted to SI 
units (m3 for volume, J for energy, and Pa for pressure) when computing values 
at specific P-T points. No unit conversions are required for the pre-exponential 
terms Do and ηo.
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Figure 10. Viscosity computed by Green-Kubo method vs. pressure 
at 3000–4000 K. Points are from MD simulations; curves represent 
Arrhenian fits based on Equation 7 and Table 4.



Martin et al.: Properties of molten Mg2SiO4 from molecular dynamics702

peratures shows little dependence on temperature. Moreover, the 
size parameter for each species is correct within a factor of two 
if we identify the characteristic length as the ionic radius of the 
appropriate ion. That is, values of the characteristic length for O, 
Mg, and Si from Figure 11 are roughly 1.4, 0.85, and 1.5 Å, and 
compare reasonably well to the ionic radii of 1.26, 0.86, and 0.54 
Å. The only anomaly is in the ordering; one would expect aO > 
aMg > aSi, whereas from Figure 11, aSi > aO > aMg. This anomaly 
may signify that Si does not diffuse independently of oxygen but 
instead Si mobility depends cooperatively on oxygen motion. 

The Eyring model is similar to the SE model although it is 
based on a somewhat more detailed atomic level picture (e.g., 
Eyring 1982). Applied to molten Mg2SiO4, the relationship 
between self-diffusivity and viscosity is: 

kT
V( n N ) DA

1/3 η
ξ= 	 (9)

where n is the number of atoms per formula unit (n = 7), V(P,T) is 
the molar volume at the state point at which the atom diffusivity 
and shear viscosity are evaluated, and NA is Avogadro’s number. 
In a simple fluid, such as liquid argon for example, ξ represents 
the number of nearest neighbors surrounding a central diffusing 
atom that are pushed aside during the atom hopping event. In 
other words, ξ represents the number of atoms in the activated 
complex. Typically, ξ takes on values in the range 6–12 in simple 
fluids. If we consider molten Mg2SiO4 as essentially an oxygen 
superlattice held together by high field strength Si, values of ξ 
within the range of the CNavg of O around central Si (~5–6, Fig. 
7) and the CNavg of O around O (~12, Fig. 8), one might expect 
a value of ξ around 10. In this admittedly simplistic view, melt 
is pictured as an oxygen superlattice that governs the kinetics 
of flow and atom mobility. This notion is not exactly correct, of 
course, but seems like a reasonable first-approximation. In Figure 
12, computed values of ξ are shown for several isotherms as a 
function of pressure. The values of ξ for O and Si are around 8, 
which is broadly consistent with the coordination statistics of 
Figures 7 and 8. In light of the crudity of the Stokes-Einstein 
and Eyring models applied to structured molten silicates, the 
broad agreement between MD results and these elementary 
mechanistic theories is surprisingly good. Whether this is coin-
cidental can only be better appreciated by applying the theory 
to other compositions. 

Concluding remarks

We carried out pair-potential MD simulations of liquid Mg2 

SiO4 along 12 isochores at 63 state points between 2100–5000 K 
and 2–110 GPa using the transferable potential model of Matsui 
(1998). The MD results were used to compute the thermal pres-
sure, isobaric expansivity, isothermal compressibility, isochoric 
heat capacity, Grüneisen parameter, and the internal energy of 
molten Mg2SiO4 over a range of conditions corresponding to the 
Earth’s mantle. Values are compiled in Table 31 at all MD state 
points. An EOS and a self-consistent thermodynamic model 
have been developed from these data. The model is based upon 
the Universal EOS of Vinet et al. (1986, 1987, 1989) and the 
potential energy scaling relation of Rosenfeld and Tarazona 
(1998). A crystal-liquid density cross-over near 15 GPa at 2100 

K is predicted. The ratio of the Grüneisen parameter to the molar 
volume is not constant as demanded by the simple integrated 
form of the Mie-Grüneisen EOS but instead varies by ~20% 
over the temperature range 2000–5000 K. 

Profound changes in melt structure at the atomic level take 
place in response to increasing pressure. Temperature effects, 
although present, are much less important. For example, along 
the 3500 K isotherm, the fraction of Si (IV), Si (V), and Si (VI) 
first-coordination polyhedra changes from 78, 20, and 2% at 5 
GPa to 1, 18, and 80%, respectively, at 95 GPa. The abundance 
of fivefold oxygen present attains a maximum at ~30 GPa at 
3500 K. Oxygen packing around central Mg follows similar 
trends although the mean coordination number is higher with 
Mg (IV) and Mg (VI) decaying monotonically with increasing 
pressure. Mg (VI) attains a maximum at 20 GPa and Mg (VII) 

0.50 

0.80 

1.10 

1.40 

1.70 

2.00 

10 15 20 25 30 35 40 

Pressure (GPa) 

3000K O 
3000K Mg 
3000K Si 
5000K O 
5000K Mg 
5000K Si 

 

C
h

a
ra

ct
e
ri

st
ic

 l
e
n

g
th

 (
Å

) 

Figure 11. Stokes-Einstein plot based on Equation 7b for O, Si, 
and Mg at 3000 and 5000 K vs. pressure. The ordinate is the length 
scale a equivalent to the effective hydrodynamic radius of the diffusing 
particle. a is approximately constant, consistent with the SE relation. 
For oxygen, the characteristic length closely approximates the ionic 
radius of oxygen.
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Figure 12. Parameter ξ, related to the number of neighboring atoms 
the diffusing entity must push aside to allow flow vs. pressure based on 
the Eyring relationship, Equation 9. The lack of significant pressure-
dependence of ξ is consistent with the expectation from the Eyring model. 
Values of ξ around 6–10 are expected based on coordination statistics 
from the MD simulations.
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and Mg (VIII) increase monotonically with increasing pressure. 
The mean CN of O around Mg of ~5.5 at low P increases to ~7.5 
at 90 GPa. The packing of Si around central oxygen also shows 
systematic changes with increasing pressure. At P ~5 GPa, 60% 
of the Si has one nearest O neighbor, whereas 20% of the Si has 
either two (Si2O7 dimer) or no oxygen as a nearest neighbor. Po-
lymerization occurs as pressure increases as two SiO4 tetrahedra 
condense to form a dimer and produce free oxygen. Hence at 
5 GPa, 80% of the oxygen is non-bridging oxygen (NBO) and 
the fraction of bridging oxygen (BO) is ~20%. In contrast, at 90 
GPa about equal amounts of BO and NBO coexist. The mean 
CN of Mg around central oxygen shows relatively little varia-
tion except for a modest increase from ~3 to ~3.6 in the pressure 
range 5–100 GPa at 3500 K. In contrast, the coordination of 
oxygen around other oxygen reveals two interesting features. 
The mean CN of O around O at low P (5 GPa) is ~11.5 with 
O (XI), O (XII), and O (XIII) dominating. At P corresponding 
to the crystalline polymorphic inversion of olivine to β-spinel 
structure, the abundance of O (IX), O (X), O (XI), and O (XII) 
all decrease abruptly, whereas O (XIII) and O (IVX) increase in 
abundance. At about 40 GPa O (IX) and O (X) increase such that 
the mean CN at 100 GPa is ~10, lower than the mean oxygen 
around oxygen CN at 5 GPa. 

Self-diffusivities for Si, Mg, and O are fit to a modified 
Arrhenian expression and exhibit monotonic decrease along an 
isotherm. Activation energies are in the range 67–79 kJ/mol with 
Mg exhibiting the lowest activation barrier. The zero pressure 
activation volume Vo* is in the range 1.1–1.4 cm3/mol and is 
largest for Mg and smallest for Si consistent with ionic radii. The 
shear viscosity was computed using the Green-Kubo formula-
tion and MD values for the temporal decay of the off-diagonal 
components of the stress tensor. The shear viscosity follows the 
modified Arrhenian expression with an activation energy for 
viscous flow of 41 kJ/mol and a zero-pressure activation volume 
of 1.5 cm3/mol, essentially identical to the activation volume for 
diffusion. The validity of the Stokes-Einstein and Eyring models 
for relating self-diffusion to shear viscosity have been tested 
and show reasonable congruity. Data from the MD simulations 
are used to develop a comprehensive EOS for molten Mg2SiO4. 
Although the Matsui (1998) potential used is a transferable 
potential and was not developed specifically for Mg2SiO4 we 
were able to use it to develop an EOS model that reproduces 
the E-V-P-T relations from simulations very well, and reproduce 
many properties of the liquid found in the single-composition 
potential and ab initio studies mentioned.
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