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ABSTRACT

Molecular Dynamics simulations have been used to study the structure, equation of state
(EOS), self-diffusion and shear viscosity of molten Mg,SiO; for pressure and temperature
in the range 2.5-110 GPa and 2100-5060 K, respectively. The transferable pair-potential
parameters of Matsui (1998) for the system Na,O-CaO-MgO-Al,O-SiO; have been used
accounting for Coulomb, Born and van der Waals forces. Simulations have been carried
out in the NEV ensemble at 63 state points along 12 isochores spanning the density range
2754-4500 kg/m’. Thermodynamic properties including the isochoric heat capacity,
isobaric expansivity, isothermal compressibility, thermal pressure, and the Griineisen
parameter are computed directly from MD results. A density crossover between molten
Mg,SiO4 and forsterite crystals occurs at ~15 GPa at 2100 K. The Griineisen parameter
() is a function of temperature, increasing with increasing 7" at low density (p< 3400
kg/m®) but decreasing as T rises at high density (p > 3400 kg/m’). The integrated form of
the Mie-Griineisen EOS requiring constancy of 7y is only approximately valid for liquid
Mg,SiOy4 since ¥ varies by ~20% over the 7 range 2000-5000 K along an isochore.
Radial distribution functions for all atoms around all other atoms were used to generate
coordination statistics as a function of P and 7. Oxygen about Si coordination increases
from Si(IV) at low pressure to octahedral Si at higher pressure; the abundance of
distorted trigonal bipyramidal five-fold polyhedra, Si(V) maximizes at 30 GPa at 3500 K.
Interestingly, O about O increases to a maximum of 13 at low P before decreasing with
increasing pressure to ~ 10. The mean CN of Si around oxygen increases from 1.2 to 1.5
consistent with an increasing abundance of Si,07 dimers as pressure increases. Self-
diffusion of Mg, Si and O was calculated at each state point and the results were used to
obtain activation energy (67 kJ/mol, 79 kJ/mol and 76 kJ/mol, respectively) and
activation volume at zero pressure (7.14);105 mol/m3, 9.1x10° mol/m3, 7.7x10° mol/m3).
The fit to an Arrhenian expression with a pressure-dependent activation volume is
excellent (R* > 0.98) for each atom. Shear viscosity of the liquid was calculated at 12
state points using the Green-Kubo formulation. Values give an excellent modified
Arrhenian fit for viscosity. Viscosity varies by a factor of ~20 (1.5x10~ Pa s to 0.03 Pa
s) at 4000 K as pressure increases from 1 bar to 100 GPa. The modified Arrhenian
exPression with E” = 41 kJ/mol and a pressure—dependent activation volume V' =v, +
Vi p (VO* = 1.46 cm*/mol, v;" = -0.005 cm’mol”’ GPa™') provides an excellent fit to
viscosity. The validity of the Stokes-Einstein and Eyring expressions for atom mobility
and shear viscosity has been examined in detail. Characteristic lengths for atom mobility
are consistent with ionic radii to within a factor of ~ 1.5-2 for all atoms. An equation of
state and thermodynamic model for Mg,Si04 liquid is developed by extending a
parameterization of the Universal EOS along a reference isotherm with temperature
dependent terms that are internally consistent with the fundamental measure functional
theory of Rosenfeld and Tarazona (1998). Our model reproduces the E-P-V-T relations
and the derived thermodynamic properties obtained from the MD simulations to within
the reported uncertainty.
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INTRODUCTION

An understanding of the equation of state, atomic structure and transport
properties of molten silicates in geochemical systems is central to many aspects of
planetary dynamics. Quantitative information bearing on the shear viscosity, self-
diffusion coefficients, and thermal and ionic conductivities of molten silicates, including
the relationship between atomic level structure and macroscopic property variation with
pressure (P) and temperature (T), is indispensable in the analysis of geochemical
processes. For example, understanding the cooling and crystallization of Earth’s early
magma ocean requires knowledge of the thermodynamic and transport properties of
MgO-rich silicate liquids at P and T in the range 0-135 GPa and 2000-6000 K,
respectively. Even higher pressures are important in modeling ‘Super-Earth’ exoplanets,
many of which will probably be discovered in the next decade (Valenci, et. al 2007). The
state of the mantle following magma ocean solidification sets the initial conditions for
growth and subsequent evolution of the lithosphere, continental and oceanic crust, the
hydrosphere and the atmosphere and impacts the start of subduction and the plate tectonic
cycle on Earth (e.g., Anderson, 2007). Because silicate liquids are generally more
compressible than crystals of the same composition, a density crossover between magma
and crystals might be anticipated at high pressure. It is possible therefore that crystalline
olivine accumulated in a region of neutral buoyancy in the Earth’s primitive magma
ocean during and immediately following Earth accretion and Giant Moon-forming
impact. Arguments have been presented for the presence today of regions of melt along

the Earth’s core-mantle boundary (Thorne, et. al 2004). Predictive models for the



properties of multicomponent silicate melts are evidently useful for addressing a variety
of primary geochemical problems.

In addition to its importance in geoscience problems, an understanding of the
amorphous state (both liquids and glasses), specifically the relationship between
structure, the equation of state (EOS) and transport properties, is of intrinsic interest in its
own right. Liquid-liquid phase separation in which two liquids of distinct composition
coexist are common in multicomponent natural systems (e.g., Roedder 1951; Philpotts
1976). There is now growing interest in the more unusual situation of polyamorphism, a
phenomenon whereby a one-component system can exist with at least two liquid or
amorphous phases having the same chemical composition but with distinct densities.
Phase transitions between liquids occur without change in composition but instead with a
change in density as temperature or pressure are varied (Tanaka 2000). Experimental
evidence for polyamorphism has been found in a number of systems including molten
silica, H,O and binary melts in the system Al,03-Y,03 (Aasland and McMillan 1994;
Senker and Rossler 2001; Debenedetti 1996). The existence or lack of polyamorphism
can be predicted from critical point analysis of the thermodynamic EOS. Molecular
Dynamics simulation has proved to be a useful tool for searching for possible liquid-
liquid phase transitions in silicate melts (Saika-Voivod et al. 2000; Skibinsky et al. 2004).
Here we extend this search to molten Mg,SiO4 by performing a sufficient number of MD
simulations to enable accurate derivation of its equation of state needed to assess
polyamorphism in molten Mg,SiO4. Many additional aspects of the liquid state remain to
be explored. Most significant to geochemical systems is the profound reorganization of

melt structure upon pressure increase. Atomic-level structural modifications exert a first-



order influence on the melt properties that, in turn, play important geodynamical roles. A
better understanding of the liquid state is clearly applicable to many first-order
geodynamical issues.

In this study, the structure and properties of liquid Mg,SiO; at elevated P and T
are computed by Molecular Dynamics simulation and compared to laboratory results.
Additionally, the MD-derived EOS data are used to build comprehensive expressions for
the equation of state, internal energy and related thermodynamic properties of liquid
Mg,Si0;4 and to investigate the possibility of a liquid-liquid phase transition. The
transferable pair-potential model of Matsui (1998) for the system Na,O-CaO-MgO-
Al,03-S10; is used to study liquid Mg,Si04 at density (p), T and P in the range 2754-
4500 kg/m’, 2100—5000 K and 2-110 GPa, respectively. The properties of liquid
Mg,Si104 have been computed at 63 state points along 12 isochores utilizing 50 ps
duration equilibrium or metastable liquid MD simulations. A first nearest neighbor
analysis of Mg, Si and O as a function of density (pressure) along several isotherms is
presented. Thermodynamic parameters including the isochoric heat capacity, the
Griineisen parameter, the isothermal compressibility and isobaric expansivity are
presented in tabular form at all of the state points studied. Self-diffusivities of Mg, Si and
O are used to compute activation energies and volumes and the connection between self-
diffusion and short-range melt structure is elucidated. In addition, twelve ‘long-duration’
MD simulations of 2 nanoseconds (ns) were made to compute the shear viscosity by the
Green-Kubo method as a function of temperature and pressure. These long-duration
simulations enable a test of the applicability of the Stokes-Einstein and Eyring relations

between self-diffusivity of Mg, Si and O and melt shear viscosity and afford a



comparison between the activation energy and volumes for self-diffusion and viscous
flow.
MOLECULAR DYNAMICS SIMULATIONS: POTENTIALS AND
COMPUTATIONAL DETAILS

A detailed description of the Molecular Dynamics (MD) method with details
regarding the implementation and protocol used in this study may be found in Spera et al.
(2009). Here we briefly present relevant details pertinent to Mg,>SiO4 liquid. The
potential used in this study is the semi-empirical pair potential of Matsui (1998) for the
system Na,O-CaO-MgO-Al,03-Si0,. The functional form of the potential includes
contributions from long-range Coulombic forces, short-range Born-Mayer exponential
repulsion and van der Waals dipolar attractive forces. The potential between two atoms
i-jis:
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where €, is the permittivity of free space, r;; is the distance between atom i and j, g; is the
charge of the i" atom, and Aj;, Bjj and C;; are parameters that quantify the short-range
energetics of atom pair ij. Figure 1 shows the potential energy as a function of
interatomic distance (r) for Mg-O, Si-O and O-O interactions. The potential form is
radially-symmetric and pair-wise additive. Fractional charges are used in the MD
simulations, with qo = -0.945, qmg = 0.945, and qs;= 1.89. The parameters used to define
the potential energy interactions are given in Table 1. Details on how the potential was
derived may be found in Matsui (1994, 1998).

Molecular Dynamics simulations were performed using 8001 atoms (1143

formula units) in the microcanonical (NEV) ensemble. Each MD run followed the same



protocol: (1) initial positions were configured with atoms in random positions, (2) the
system was run at a fixed temperature of 10000 K for 2 picoseconds (ps) to remove
excess energy (3) the resulting configuration was run for 2 ps to stabilize following
removal of residual net momentum (4) the system was then cooled to the desired
temperature using velocity scaling for ~12 ps (5) finally, a 50 ps production simulation
was carried out on the equilibrium liquid. Steps (2)-(5) were run using a timestep of 1
femtosecond (fs). All simulations were carried out at fixed volume (density). To verify
that thermal equilibrium was achieved for each 50 ps production run, the average
simulation temperature was computed for the first and last 10 ps of each 50 ps production
run. The two temperature averages were always within the intrinsic temperature
fluctuation of the specified simulation (o), in fact usually much closer (3-5 K). Atom
trajectories were saved at 10 fs intervals as was temperature (T), pressure (P), kinetic
energy (Uk), isochoric heat capacity (Cy) and potential energy (Up). The fluctuations in

temperature (0t) and pressure (0,,) due to the finite size system were calculated at the end

of each run. Fluctuation theory informs us that 61 and 6, scale as N> where N is the

12 scaling implies, for

number of atoms used in the simulation (McQuarrie 2000). The N
example, that o7 and G, are four times smaller in a MD simulation of 8000 atoms
compared to one with 500. Using too small an N introduces unacceptable uncertainties in
MD state point coordinates (P and T) and directly propagates into uncertainties in
thermodynamic and transport properties and into structural states defined by nearest
neighbor coordination statistics. The fluctuations for each run are gathered in Table 2

(Electronic Appendix); typically, ot is ~ 25 K and 6, ~ 0.25 GPa. These values represent

the intrinsic uncertainty to all state points in this study given the potential parameters of



Table 1. Note that these uncertainties are generally smaller than those of many

laboratory experiments at the conditions of elevated T and P explored in this study.

RESULTS
Thermodynamic Properties

The essential results for each equilibrium simulation are presented in Tables 2 and
3 (Electronic Appendix). Figure 2 gives the location in P-T coordinates of sixty-three
state points along the 12 isochores studied. The isochores are very slightly non-parallel
implying there is a weak density (or pressure) dependence of the slopes of these curves
(see the discussion of thermal pressure below). In the appendix we develop an equation
of state (EOS) and thermodynamic model from the U-P-p state point data. Below, we
evaluate some of the important thermodynamic quantities that may be derived from the
MD simulation results.

The p-P-T results are re-plotted in Figure 3 to demonstrate the density variation
with respect to pressure along the seven isotherms studied. These data points are
interpolated and extrapolated by the EOS developed in the Appendix as shown. Our
results are offset to higher pressures with respect to the empirical potential MD
simulations of Lacks et al. (2007) and Belonoshko and Dubrovinsky (1996; not shown).
Within the error of the DFT MD results of de Koker et al. (2008), our state points are in
agreement at low-P, and systematically displaced to higher pressures at elevated P. All of
the MD results shown in Figure 3 are in disagreement with the zero pressure volume of

Mg»Si04 liquid inferred from the analysis of the fusion curve, as estimated by Ghiorso

(2004).



Thermal pressure. The near-linearity of the P-T coordinates on Figure 2 implies
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modulus, is nearly constant along an isochore. Values of the thermal pressure were
computed by centered finite difference methods at interior points and by backward and
forward finite difference at the extremes. These values are presented in Table 3
(Electronic Appendix) and illustrated in Figure 4. The thermal pressure varies by about a
factor of three from ~ 0.003 GPa/K at low density (2754 kg/m®) to ~ 0.01 GPa/K at high
density (4500 kg/m”).

Isothermal compressibility and isobaric expansivity. Because the temperatures
at which simulations were carried out along each isochore are the same within the
temperature fluctuation, o, the isothermal compressibility can be estimated at each state
point. Finite difference methods were to compute 3 (P,T) at each state point from its
definition. Values are collected in Table 3 (Electronic Appendix). Values decrease along
isochores as T and P increase. Along a low-density isochore (e.g., p=2754 kg/m’), B
decreases by a factor ~ 2 as T and P increase (2100—5040 K and 2—11 GPa,
respectively) giving an isothermal bulk modulus (K=B™) of ~40 GPa to ~65 GPa. The
value of K at high melt density (T € [3200—5053K], p € [90—110 GPa]) is ~470 GPa,
ten times that of the low-P value. For comparison, the isentropic bulk modulus of
forsterite crystals at STP is 128.2 GPa (Poirier 2000).

Combining values of the thermal pressure with those of the isothermal

compressibility permits computation of the isobaric expansivity at each state point.



Values of a (P,T) are collected in Table 3 (Electronic Appendix). The isobaric
expansivity is larger at low T and P and decrease monotonically along isochores in
response to increasing P and T. Values of the expansivity vary from 8 x 10° K™ to 2.1 x
10° K from lowest to highest p-T conditions; a typical representative value for liquid
Mg,SiOy is ~ 4.5x10”° K. In comparison, for forsterite crystals, oo =2.5x107 K™ at
comparable p-T conditions (Poirier 2000).

Density inversion. Although the density of molten Mg,;SiOy is less than that of
crystalline forsterite at low pressure, the compressibility of Mg,SiO4 liquid, like most
liquids, exceeds that of its crystalline counterpart. This implies the possibility of a
density inversion at high pressure where the density of forsterite is less than the density
of liquid of identical composition. Obviously in such a case, olivine crystals will float in
Mg»Si0y liquid. In Figure 5, the density of crystalline forsterite based on the Vinet EOS
determined by Ghiorso (2004) and liquid Mg,SiO4 from the MD simulations is shown
along several isotherms. In figure 5a, at 2100 K, density inversion occurs at ~ 15 GPa
equivalent to a depth on Earth of 430 km near the top of the Transition Zone region. At
higher temperature, the neutral buoyancy depth increases; in figure Sc, for example, at
3585 K the neutral buoyancy depth is ~ 35 GPa. Shock-wave studies of liquid Mg,;Si04
conducted by Mosenfelder (2007) imply a density inversion at ~ 16 GPa, although the
temperature of the shocked liquid is ambiguous.

Internal energy. Energies are computed at each time step and the average for
each run is given in Table 2 (Electronic Appendix). The kinetic energy of a classical
ionic material in the high temperature limit is Ux = (3/2) nRT, where R is the universal

gas constant and n is the number of atoms in the formula unit (n = 7). The MD-computed



values for Uk are within 1% of the classical limiting value, not surprising considering the
temperatures of the simulations.
Isochoric heat capacity and the Griineisen parameter. The isochoric heat

capacity Cy was computed using centered finite differences to estimate the derivative

Cy= (%} . Isochoric molar heat capacity values lie between 177 J/mol K and 225
v

J/mol K with a mean value of 200 J/mol K over the P-T range of the simulations. This
mean value can be compared to the extrapolated value for the isobaric molar heat
capacity of forsterite crystals of 206 J/mol K (Poirier 2000). Using the heat capacity in

combination with the isothermal compressibility and isobaric expansivity, the Griineisen

parameter (7y) is computed from its definition yz%; values are given in Table 3
Vv

(Electronic Appendix). The validity of the empirical power-law expression relating the

Griineisen parameter to the melt density (e.g., Birch 1952; Anderson 1979; Quareni and
Mulargia 1988) can be tested. The empirical relation is y=y,(o/ pu)q. Using simulation

MF-1 for reference conditions the fit gives q =1.29 and Y, = 0.86 (R*= 0.96). At STP,
forsterite crystals have y,= 1.18 for comparison (Anderson 2007). Due mainly to the
larger compressibility of liquid Mg,Si04 compared to crystals, the reference Griineisen
parameter is somewhat smaller. Our values for the Griineisen parameter fall within the
limits of those measured for molten Mg,Si0,4 by the shockwave experiments of
Mosenfelder et al. (2007). For example, they found y’s ~ 0.4-1.2 at 3000 kg/m® and 1.4-2
at 4500 kg/m’, whereas our results give a range of 0.88-1 and 1.43-1.57 respectively.
Finally, we can test the validity of the Mie-Griineisen EOS. Recall that the

thermal pressure is related to y by the definition
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Integrating at constant volume and assuming for the moment that y is a constant, the Mie-

Griineisen EOS is obtained in the form
v
PZ—PI:VTJ;CVCIT 3).

In order to apply this form of the Mie-Griineisen EOS the product yp must be constant
along an isochore. In figure 6, this quantity is plotted versus pressure. In fact, there is a
temperature dependence of yp such that for p < 3400 kg/m’, y increases as T increases
whereas for p > 3400 kg/m’, the opposite holds. Quantitatively, there is a change of circa
15-20% in the product yp from 2000- 5000 K. This change indicates that the simple form
of the Mie-Griineisen EOS is not adequate for modeling the high temperature properties
of liquid Mg;SiOs.
Melt Structure

Short-range coordination statistics. Melt structure and its variation with
density (or pressure) and temperature can be investigated by examination of the first
nearest neighbor coordination statistics or the Coordination Number (CN) of the i type
of atom around every other type of atom, j allowing for i =j. The CN of atom i around
atom j (atom j is the central atom) is determined by first identifying for the pair the value
of the radial coordinate r of the first minimum following the first maximum of the partial
radial distribution function (RDF) gj(r). The radial distribution function expresses the
probability of finding an atom of type i in a sphere of radius r around an atom of type .
Because fluctuations in atom position are an intrinsic part of liquid behavior, at a given

state point many atom location ‘snapshots’ are averaged so that robust CN statistics can



be obtained. In this study approximately 50000 snapshots are used to define the RDF for

each CN analysis. The definition of the RDF
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mor®  dr
is used to determine N;j(r), average number of i atoms at a distance between r and r + dr
from atom j. Once the distance to the first minimum of the RDF is known, the CN is
calculated by averaging position ‘snapshots’ at 0.5 ps intervals. The averaging intervals
were spaced by 0.5 ps to ensure uncorrelated time averages. In this way, isothermal plots
of the coordination number versus pressure can be used to investigate the melt structure
as density (or pressure) changes along an isotherm. Coordination numbers of Si, Mg and
O around a central O, and oxygen coordinated around central Si and Mg atoms were
determined at each state point and are given in figures 7 and 8 at 3500 K and 5000 K as a
function of pressure. CN statistics are presented as percentages of the number fraction.

Oxygen as central atom. By atom number and volume, Mg,Si0y is roughly 57%
and 86% oxygen, respectively. It is logical therefore to consider the CN’s of Si, Mg and
O around central oxygens. In figure 7a the coordination of Si around central oxygen is
shown at 3500 K and 5000 K as a function of pressure. At low pressure, ~60% of the
oxygen has one nearest Si neighbor whereas about 20% of the O is ‘free’ oxygen (no
closest Si neighbors, CN = 0) and 20% of the oxygen is two-coordinated by Si (CN = 2).
The fraction of ‘free’ oxygen (CN = 0) expectedly decreases with increasing pressure.
The fraction of CN = 0 oxygen is high, indicating a relatively ‘defect-ridden’ melt
structure consistent with depolymerization.

As pressure increases the fraction of non-bridging oxygen (CN = 1) and ‘free’

oxygen (CN = 0) decreases whereas the fraction of oxygen with two nearest Si neighbors



(CN =2) increases as does the oxygen of CN = 3. The stoichiometry indicates that as
pressure increases free oxygen (CN = 0) combines with two non-linked tetrahedra (each
with CN = 1) to form a tetrahedral dimer in which one oxygen is shared by two Si. At 80
GPa the fraction of dimmers is about 40%, a result also consistent with depolymerization
and one that matches very well results from Sen and Tangeman (2008) who used
molecular dynamics simulations of Mg,Si04 liquid at 2273 K and the NMR spectrum of
¥Si in Mg,SiO4 glass to estimate a dimer (Si,07) fraction of 40%. The number of
oxygen with three nearest neighbor Si increases from a negligible amount to about 10%
at 97 GPa. The average CN increases from slightly above unity at low pressure to about
1.44 at the highest pressure studied. Comparison of results at 3500 K and 5000 K
indicates that temperature exerts a very weak influence on Si around O coordination
statistics; pressure is far more important. The coordination of Mg around oxygen is
shown in figure 7b at 3500 K and 5000 K. At low pressure the average coordination
number CN,, of Mg around O is ~ 3; as pressure increases so does the CN,, to a value
around 3.6. The higher CN’s for Mg compared to Si around oxygen reflects the large
size of Mg relative to Si. The steepest change in Mg CN occurs in the range 10-30 GPa.
Similar to Si coordination around O, the effect of increasing temperature from 3500 K to
5000 K is weak; the pressure dominates over temperature and exerts a first-order effect
on short-range order in molten Mg;Si04.

In figure 7c, the CN of oxygen around oxygen is shown. At low pressures, high
coordination oxygen polyhedra predominate; CN,y, is about 11. There is a small but

statistically significant increase in the fraction of CN = 13 and 14 and a correlative



decrease in CN equal to 9, 10, 11, and 12 near 14 GPa at 3500 K and an analogous but
more poorly defined feature at 5000 K.

At pressures greater than about 50 GPa, the abundance of highly coordinated
oxygen (CN = 12, 13, and 14) drops off whereas the CN = 9 and 10 oxygen increase in
concentration at both 3500 K and 5000 K, although the effect is somewhat muted at 5000
K.

Silicon and Magnesium as central atoms. The coordination of oxygen around a
central Si gives direct information regarding the local state of polymerization of a melt.
Figure 8a shows the CN of oxygen around a central Si atom at 3500 K and 5000 K. At
low pressure, more than 75% of the Si is tetrahedrally coordinated with oxygen, the rest
mainly in 5-fold coordination, defining distorted trigonal bipyramidal polyhedra. There
is a rapid change in coordination as pressure increases. At~ 20 GPa, the abundances of
four-fold and five-fold Si are equal (~ 45%) and 10% of the Si is in octahedral (CN = 6)
coordination. The abundance of CN = 5 peaks at ~ 30 GPa; the abundance of CN =5 and
CN = 6 are equal (45%) at 43 GPa. At high pressure the melt is dominated by CN = 6
with very little tetrahedral oxygen and about 15% CN = 5. There is also about 10% of
CN =7. Trends are rather systematic and smooth. These relationships are preserved at
5000 K although distributions are somewhat broader than at 3500 K and the CN =5 to
CN = 6 crossover occurs at higher pressure, around 60 GPa.

Finally, in figure 8b the coordination of oxygen around Mg is shown at 3500 K
and at 5000 K. At low pressure, CN,, = 5.5. As pressure increases the average CN
increases and equals = 7.5 near 100 GPa. Octahedrally coordinated Mg attains a

maximum at about 20 GPa and decreases systematically as pressure increases. The



number of seven coordinated polyhedra maximize at about 50 GPa, whereas Mg with
eight nearest oxygen neighbors attains a maximum at circa 100 GPa. Once again,
relations at 5000 K are quite similar except that abundance distributions are somewhat
broader.

These observations of the P- and T-dependence of the CN’s of Si and Mg are
broadly consistent with the DFT MD study of de Koker et al. (2008).
Transport Properties

Self-Diffusivity. Self- diffusion coefficients were computed for all runs using

accumulated statistics and the Einstein relation

N;
<Z[ri(t)—ri(0>]2>

©)

D, =lim
t—so0 6Nt

where r; is the position of atom i and N; is the number of atoms of type i. The term in
angled brackets, the mean-squared displacement (MSD), is calculated for each state point
simulation from atom trajectories. MSD plots are very linear in time; the Fickian
diffusion coefficient is readily calculated from the slope. The very early ballistic part of
the MSD (approximately the first 100 fs) is disregarded in the calculation of D.
Self-diffusivities for Mg, Si and O at all state points are listed in Table 2
(Electronic Appendix). Self-diffusivities for all atoms at 2500 K and 4500 K for pressure
spanning 0-100 GPa are shown in Figure 9. The computer glass transition is approached
from the equilibrium (ergodic) liquid at high pressures along the 2500 K isotherm. Mg
remains the most mobile species throughout all P-T space. Oxygen and silicon are the
slower diffusers. There is a decrease in all diffusivities with increasing pressure along an

isotherm. The slope in these coordinates is directly related to the activation volume, V".



The variable slope indicates non-Arrhenian behavior over the temperature range of the
simulations.
The MD data are well fit by a modified Arrhenian transport model. The

expression is:

—(E" +[v. +V/P]P))
RT

D=D, exp{ (6)

where R is the gas constant, E* is the activation energy for diffusion, and the activation
volume V* is a function of pressure only, V= V0*+V1*p. Vo* is the activation volume at
zero pressure and v, is the pressure—derivative of the activation volume for diffusion.
Values and statistics computed by regression for E, D, and V" are collected in Table 4.
Other parameterizations such as allowing for temperature dependence of V" do not
improve the fit; activation volume depends principally on pressure (R* > 0.98 for Mg, Si
and O). Activation energies are in the range 67-79 kJ/mol with Mg exhibiting the lowest
activation barrier. The zero pressure activation volume VO* is in the range 1.1-1.4
cm’/mol and is largest for Mg and smallest for Si; for each GPa of pressure increase the
activation volume decreases by ~ 0.005 cm’/mol for Mg and ~0.003 for Si (i.e., vi = -2.6
x 107 cm’/mol GPa). The atom with the largest zero-pressure activation volume (Mg)
also possesses the largest pressure-derivative of the activation volume (v;"), an activation
volume compensation effect.

Shear viscosity. The shear viscosity was calculated at pressure spanning 7-30
GPa and temperatures 3000-4000 K using the Green-Kubo formulation following the
procedures of Nevins and Spera (2007). Long simulations, up to 2 nanoseconds (2 ns),
were required for acquisition of robust statistics. In the Green-Kubo method, the

temporal decay of the five independent stress auto-correlation functions are related to the



dynamical relaxation time and hence the shear viscosity. Viscosity isotherms are shown
in Figure 10. The shear viscosity increases with increasing pressure along an isotherm
and decreases with increasing temperature along an isobar. At any temperature, the
viscosity increases by a factor of ten per 70 GPa increase in pressure. Multiple linear
regression was used to determine the activation energy (En*) and activation volume (Vn*)
for viscous flow. The modified Arrhenian expression that correlates the MD values very

well is:

{ (E, +[v), +V1}]plp>J -

nm=1,exp RT

which is similar to Eq (6). Note the subscript on the activation energy and volume in Eq
(7) used to differentiate the activation quantities for viscous flow and diffusion. In
general, the activation energies and volumes for diffusion and viscous flow are
independent. The parameters of the fit are given in Table 4. The correlation coefficient
R’=0.998 indicates the modified Arrhenian form is an excellent model. Interestingly, the
activation energy for viscous flow is slightly more than half that for self-diffusion of Mg,
Si and O. This observation suggests that cooperative mobility of Mg, Si and O may be
important as a viscous flow mechanism. Careful examination of tagged particle
dynamics (not attempted in this study) is needed to better understand the differences in
the activation energy for diffusion (E") versus that for viscous flow (En*). In contrast, the
activation volume for viscous flow is almost equal to that for self-diffusion falling
between the comparable values for O and Mg. The shear viscosity of molten Mg;SiO4 at
4000 K increases by a factor of 20 as pressure increases from 1 bar (10 GPa) to 100

GPa.



Self-diffusion and viscous flow. Because self-diffusivity and shear viscosity are
computed independently, the data can be used to test the validity of the Stokes-Einstein
(SE) and related Eyring (EY) relations between self-diffusion, shear viscosity and
characteristic size of the mobile species.

The Stokes-Einstein relation relates the mobility of an atom (i.e., Mg, Si, or O) to
the frictional force exerted on the atom as it diffuses through a continuum medium of
viscosity 1. The model is often used to estimate self-diffusivity when shear viscosity is
known or vice versa. In the model, the frictional force exerted on a ‘particle’ is
f =6mna (no slip boundary) or f =4 zna (slip boundary), where a is the radius of the
diffusing particle. For a sphere, a is the particle radius. The frictional force is related to
the self-diffusion coefficient according to f = k7/D where k is the Boltzmann constant.
Equating the frictional force expressions gives a relationship between melt viscosity, self-
diffusivity and particle size atoms. For a simple Stokes-Einstein fluid, a is constant. The

expression is

a= kT (8a)
67Dn
for no slip boundary condition and
a= KT (8b)
47Dn

when slip conditions prevail. Implicit in the constancy of a in eq (8) is that the P-T
dependence of the shear viscosity and the self-diffusivity of oxygen precisely offset one
another and that the size of the diffusing ‘species’ is constant.

In Figure 11, the Stokes-Einstein size parameter a is plotted versus pressure for

Mg, Si and O at 3000 K and 5000 K. If the SE expression is valid, then the data should



define a trend with zero slope and characteristic lengths should approximately equal the
ionic radii of Mg, Si or O. In fact, the slopes are near zero with very slight dependence
upon pressure, agreeing with the SE expectation. Comparing isotherms at low and high
temperatures shows little dependence on temperature. Moreover, the size parameter for
each species is correct within a factor of two if we identify the characteristic length as the
ionic radius of the appropriate ion. That is, values of the characteristic length a for O,
Mg, and Si from Figure 11 at 4000 K are ~ 0.8 A, 1.6 A, and 1.3 A, and compare
reasonably well to the ionic radii of 0.86 A, 0.54 A and 1.26 A. The only anomaly is in
the ordering; one would expect ap > amy > as; whereas from Figure 11, asi> ao> awmg.
This anomaly may signify that Si does not diffuse independently of oxygen but instead Si
mobility depends cooperatively on oxygen motion.

The Eyring model is similar to the SE model although it is based on a somewhat
more detailed atomic level mechanism (e.g., Eyring 1982). Applied to molten Mg;SiO4
the relationship between self-diffusivity and viscosity is:

kT _
(V/nN,)”Dp

¢ )

where n is the number of atoms per formula unit (n = 7), V(P,T) is the molar volume at
the state point at which the atom diffusivity and shear viscosity are evaluated and Ny is
Avogadro’s number. In a simple fluid, such as liquid argon, for example, & represents the
number of nearest neighbors surrounding a central diffusing atom that are pushed aside
during the atom hopping event. Typically, & takes on values in the range 6-12 in simple
fluids. For Mg;SiO4 liquid, § presumably represents some suitable average CN. If we

consider molten Mg,SiOy4 as essentially an oxygen superlattice glued together by high

field strength Si, values of § within the range of the CN,, of O around central Si (~5-6,



Figure 7) and the CN,, of O around O (~ 12, Figure 8), one might expect a value of §
around 10. In this admittedly simplistic view, melt is pictured as an oxygen superlattice
that governs the kinetics of flow and atom mobility. This notion is not exactly correct, of
course, but seems like a reasonable first-approximation to a more complicated picture. In
Figure 12, computed values of & are shown for several isotherms as a function of
pressure. The values of § for O and Si are around 8 which is broadly consistent with the
coordination statistics of Figures 7 and 8. In light of the crudity of the Stokes-Einstein
and Eyring models applied to structured molten silicates, the broad agreement between
MD results and these elementary mechanistic theories is surprisingly good. Whether this
is coincidental can only be better appreciated by applying the theory to other
compositions such as molten MgSiO3 and molten CaAl,;Si,Og (Spera et al 2009; Nevins
and Spera 2009).
CONCLUSIONS

We carried out pair-potential molecular dynamics simulations of liquid Mg;Si04
along 12 isochores at 63 state (P,T) points at T from 2100-5000 K and P from 2-110 GPa
using the transferable potential model of Matsui (1998). The MD results were used to
compute the thermal pressure, isobaric expansivity, isothermal compressibility, isochoric
heat capacity, Griineisen parameter, and the internal energy of molten Mg,Si04 over a
range of conditions corresponding to the Earth’s mantle. Values are compiled in tabular
form (Electronic Appendix) at all MD state points. An equation of state and a self-
consistent thermodynamic model is developed from these data. The model is based upon
the Universal EOS of Vinet et al. (1986; 1987; 1989) and the potential energy scaling

relation of Rosenfeld and Tarazona (1998). A crystal-liquid density cross-over near 15



GPa at 2100 K is predicted. The ratio of the Griineisen parameter to the molar volume is
not constant as demanded by the simple integrated form of the Mie-Griineisen EOS but
instead varies by ~ 20% over the temperature range 2000-5000 K.

Profound changes in melt structure at the atomic level take place in response to
increasing pressure; temperature effects, although present, are much less important. For
example, along the 3500 K isotherm, the fraction of Si (IV), Si (V), and Si (VI) first-
coordination polyhedra changes from 78%, 20%, and 2% at 5 GPa to 1%, 18%, and 80%,
respectively at 95 GPa. The abundance of 5-fold oxygen present attains a maximum at ~
30 GPa at 3500 K. Oxygen packing around central Mg follows similar trends although
the mean coordination number is higher with Mg (IV) and Mg (VI) decaying
monotonically with increasing pressure. Mg (VI) attains a maximum at 20 GPa and Mg
(VII) and Mg (VIII) increase monotonically with increasing pressure. The mean CN of O
around Mg of ~ 5.5 at low P increases to ~ 7.5 at 90 GPa. The packing of Si around
central oxygen also shows systematic changes with increasing pressure. AtP ~5 GPa,
60% of the Si has one nearest O neighbor whereas 20% of the Si has either two (Si,07
dimer) or no oxygen as a nearest neighbor. Polymerization occurs as pressure increases
as two Si0y tetrahedra condense to form a dimer and produce a free oxygen. Hence at 5
GPa, 80% of the oxygen is non-bridging oxygen (NBO) and the fraction of bridging
oxygen (BO) is ~ 20%. In contrast, at 90 GPa about equal amounts of BO and NBO
coexist. The mean CN of Mg around central oxygen shows relatively little variation
except for a modest increase from ~ 3 to ~ 3.6 in the pressure range 5-100 GPa at 3500 K.
In contrast the coordination of oxygen around other oxygen reveals two interesting

features. The mean CN of O around O at low P (5GPa) is ~ 11.5 with O (XI, XII and



XIII) dominating. At P corresponding to the crystalline polymorphic inversion of olivine
to B-spinel structure, the abundance of O (IX), O (X), O (XI), and O (XII) all decrease
abruptly whereas O (XIII) and O (IVX) increase in abundance. At about 40 GPa O (IX)
and O (X) increase such that the mean CN at 100 GPa is ~10, lower than the mean
oxygen around oxygen CN at 5 GPa.

Self-diffusivities for Si, Mg and O are fit to a modified Arrhenian expression and
exhibit monotonic decrease along an isotherm. Activation energies are in the range 67-79
kJ/mol with Mg exhibiting the lowest activation barrier. The zero pressure activation
volume v, is in the range 1.1-1.4 cm’/mol and is largest for Mg and smallest for Si
consistent with ionic radii. The shear viscosity was computed using the Green-Kubo
formulation and MD values for the temporal decay of the off-diagonal components of the
stress tensor. The shear viscosity follows the modified Arrhenian expression with an
activation energy for viscous flow of 41 kJ/mol and a zero-pressure activation volume of
1.5 cm’/mol, essentially identical to the activation volume for diffusion. The validity of
the Stokes-Einstein and Eyring models for relating self-diffusion to shear viscosity have
been tested and show reasonable congruity. Data from the MD simulations are used in

part 2 to develop a comprehensive EOS for molten Mg,SiOy.
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Captions

Figure 1. Interatomic potentials for Mg-O, Si-O, and O-O pair interactions. The form of
the potential is given by eq (1) in text; numerical parameters are given in Table 1 are
derived from Matsui (1998).

Figure 2. Location of state points in p-T space investigated by MD simulation in this
study. State point uncertainties are identical to T and p fluctuations of o= 25 K and 6,=
0.25 GPa, respectively. The fusion curve of forsterite is from Ghiorso (2004). Most of
the simulations are in the equilibrium liquid field although a few correspond to
metastable liquid.

Figure 3. Density estimates for Mg,Si04 liquid. State points computed in this paper are
plotted as solid circles. The thin solid curves interpolate and extrapolate these states
points using the EOS developed in the Appendix. The results of this paper are compared
to the empirical potential MD calculations of Lacks et al. (2007; heavy solid curve) and
the DFT MD estimates along three isotherms reported by de Koker et al. (2008). The
large striped symbol indicates a zero pressure estimate of the molar volume of Mg,Si04
liquid calculated from the initial slope of the forsterite fusion curve (Ghiorso, 2004).

Figure 4. Thermal pressure coefficient (0/3) plotted versus pressure. MD simulation data
are shown with estimated uncertainties. Curves are calculated from the model developed
in the appendix. Isotherms are chosen as average temperatures of the simulations.

Figure 5. Density inversion, where the crystalline Mg;Si04 becomes less dense than the
liquid phase, shown for different temperatures.

Figure 6. The product of the thermodynamic Gruneisen parameter and liquid density (yp)
plotted versus pressure. The non-zero slopes of the MD data arrayed along each isochore
show that the simple integrated form of the Mie-Gruneisen EOS requiring constantcy of
vp is only approximately applicable. MD simulation data are shown with estimated
uncertainties. Curves are calculated from the model developed in the appendix.
Isotherms are chosen as average temperatures of the simulations.

Figure 7. (a) Si around O coordination statistics along 3583 K and 5043 K isotherms. (b)
Mg around O coordination statistics along 3583 K and 5043 K isotherms. (c¢) O around O
coordination statistics along 3583 K and 5043 K isotherms. The solid thatched line
represents the average coordination state (CN,y) based on the number fractions.

Figure 8. (a) O around Si coordination statistics along 3583 K and 5043 K isotherms. (b)
O around Mg coordination statistics along 3583 K and 5043 K isotherms. The solid
thatched line represents the average coordination number, CN,y.

Figure 9. Self-Diffusivity for O, Mg and Si at 3583 K versus pressure. Points represent
values derived from MD simulations and curves are based on fit using eq (6) and



parameters from Table 4. The non-linear slope implies a small pressure-dependence of
the activation volume for diffusion for all atoms.

Figure 10. Viscosity computed by Green-Kubo method versus pressure at 3000-4000 K.
Points are from MD simulations; curves represent Arrhenian fits based on eq (7) and
Table 4.

Figure 11. Stokes-Einstein plot based on eq (7b) for O, Si and Mg at 3000 K and 5000 K
versus pressure. The ordinate is the length scale ‘c’ equivalent to the effective
hydrodynamic radius of the diffusing particle. ‘c’ is approximately constant, consistent
with the SE relation. For oxygen, the characteristic length ‘c’ closely approximates the
ionic radius of oxygen.

Figure 12. Parameter &, related to the number of neighboring atoms the diffusing entity
must push aside to allow flow versus pressure based on the Eyring relationship, eq (9).
The lack of significant pressure-dependence of & is consistent with the expectation from
the Eyring model. Values of & around 6-10 are expected based on coordination statistics
from the MD simulations.

Figure 13. Rosenfeld-Tarazona analysis of potential energy-temperature relations. (A)
Comparsion of MD data to parameterizations of the form U = a +bT>”° (Rosenfeld and
Tarazona, 1998) for results along 12 isochores. See Table 5. (B) Residuals in U
corresponding to the Rosenfeld-Tarazona model expressions when compared to MD
simulation results. The uncertainty brackets correspond to those of the MD simulations;
model residuals are well within the 1 o brackets.

Figure 14. Polynomial representation of the volume dependence of the Rosenfeld-
Tarazona model slopes and intercepts. Uncertainties shown are the statistical
uncertainties of the linear fits along each isochore (Table 5). Polynomial coefficients are
provided in Table 6. (A) a(V) (B) b(V).

Figure 15. Model EOS recovery of the MD simulaton data. Pressure uncertainty as
reported in Table 3. An average simulation temperature is used to calculate each model
isotherm: 2112 K, 2580 K, 3082 K, 3583 K (7},), 4068 K, 4553 K, and 5042 K.
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Equation Chapter 1 Section 1

Appendix: Thermodynamic relations and Equation of
State

Rosenfeld and Tarazona (1998) derive an expression from a fundamental-measure energy
functional for hard spheres and thermodynamic perturbation theory for the functional
dependence of the potential energy (U) on volume (V) and temperature (7) in a dense

classical liquid:
UWV.T)=a(V)+b(V)T (10)

This expression beautifully represents the potential energy-temperature relations along a

given isochore obtained from our MD simulations of liquid Mg,Si0,4 (Fig. 13, Table 5).

The a(V) and b(V) functions may be parameterized using simple polynomials of volume

(Fig. 14, Table 6, e.g. Saika-Voivod et al., 2000).

Given the representation of U embodied in Eq. (10), the internal energy, E, is obtained by
addition of the kinetic energy, 7RT , where 7 in this case is seven, the number of atoms
in the formula unit of Mg,Si0,4 liquid:

EWV.T)=a(V)+b(V)T" +3—2nRT (11)

From Eq. (11) the isochoric heat capacity is readily obtained by differentiation with

respect to T at constant V

C,==—A+=R (12)
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It should be appreciated that since values of the function b(V) are positive (e.g. Fig 14b),
the heat capacity of a Rosenfeld-Tarazona fluid will decrease with increasing temperature

asymptotically to the value 3nR/2.

An internally consistent equation of state (EOS) may be constructed from Eq. (11) by
first finding an expression for the Helmholtz free energy (A), which is formally defined

as
AV, T)=EWV,T)-TS(V,T) (13)
The temperature- and volume-dependence of the entropy (S) may be obtained from Eq.

(11) and the thermodynamic identity dE =TdS — PdV . From this identity it follows that

() r(3) -
av/). v/,

and

(57,707,

which together permit the entropy to be evaluated as

+P(VT)]de (gi) ar - (14)

S(V.T)=S(V,.T,)+ j[(ﬁj

Substitution of Eq. (11) into Eq. (14) gives a model expression
SV,1)=5(,.T,)
+Ti[a(V)+ 155 (V)= a(V,)- T a(V, )+ | P TO,V)dV} (15)
0 0

( 3 (7
31 1 3n T
_Ekﬁ_ﬁjb(‘m?mn(?
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Note that the entropy is defined relative to that at a reference volume (Vo) and
temperature (Tp) — that is, with respect to an unspecified constant - and that the model
expression requires adoption of an EOS along the reference isotherm [P(7y, V)]. The

selection of this EOS is arbitrary.

Substitution of Egs. (11) and (15) into Eq. (13) gives a model expression for the

Helmholtz free energy compatible with Eq. (10)
AWV.T)=a(V)+T"b(V)+ %RT ~715(Y,.T,)
—%[a(V)+ 155 (V)= a(V,)-T7%a(V, )+ | P TO,V)dV} (16)
0 0

sl 1) (T)
+TEL% T/Jb(V)——RTlnL—J

A
An EOS is obtained from Eq. (16) by differentiation, i.e., P = _[S_V] :
T

/

This result demonstrates that a Rosenfeld-Tarazona compatible EOS — P(V,T) — can be
built from any isothermal EOS of choice, and that the temperature dependence of the
pressure arises through the parameterization of the potential energy of the fluid. In this

paper we adopt for P(Ty, V) the Universal EOS of Vinet at al. (1986; 1987; 1989)

3K, (1-x)e"™

TO’V): 2

(18)

bz
3, Vv |
where 7= E(KV — 1) and x = [7} . InEq. (18), K,, K, and V, are constants (fit

parameters of the EOS), whose values correspond to the bulk modules, its pressure
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derivative, and the zero pressure volume, respectively, all at the temperature 7. A fit to

the nominal ~3500 K MD data for Mg,>SiO4 liquid is presented in Table 7. The model

EOS is presented and compared to the MD simulation data in Fig 15.

In the low temperature limit, the Helmholtz energy [Eq. (16)] reduces to A(V,T )= a(V),

and by inspection of Fig. 14a it is clear that in the case of our model calculations for
Mg,Si04 liquid there is a range of volume over which the liquid is thermodynamically
unstable with respect to unmixing at sufficiently low-T; this region corresponds to the
portion of the curve that is concave down, and in this case the coexisting liquids differ in
structure but are identical in composition. The loci of (V,T)-points corresponding to zero-

curvature of A is known as the spinoidal and is given by the thermodynanic condition of

phase instability (Prigogine and Defay, 1954): @%V)T =0, which from Eq. (17) is

2 % 2
v/, \To J av: 2 TOJ av: T, dv

for our thermodynamic model. The highest temerature that satisfies Eq. (19) is the
critical point (the temperature of the onset of unmixing). We find this 7 to be below 100

K, a condition corresponding to the deeply supercooled region.

A compete set of thermodynamic functions can be developed from Eqgs. (16) and (17) and
the numerical evaluation of these functions requires no further paramterization of the MD

data.

The Gibbs free energy (G =A+ PV ) is



78

79

80

81

82

83

84

85

86

87

Appendix 9/9/08,6:50 PM 5/6

G(V.T)=a(V)+T"b(V)+ %RT ~15(Y,.T,)

_Tﬂ[a(v)Jr 17(V)=a (V)= a(v,)+ [, P TO,V)dV}

0

301 1) (7) (20)
+T5Lﬁ To Jb(V) —RTlnL—J
7
(F s () s e

oP .
The coefficient of “thermal pressure,” [a—T] , 1s given as
\4

or), T, dvVv 2 3T dv T,

(a_P) 1da(V) 3. % ls(ﬂ/ }db(v)JrP(TO,v) o

The bulk modulus, K = —V[g—‘éj , 1s found to be

T

(1 _ ), da(v)_s /[{T\/ 1},db(V) T, dP(T,,V) 22)

LT av: 2 T, av: T, av

P P
and, since aK = [8_) = _(B_V) (a—j , the isothermal coefficient of expansion ()
or/, or/ ,\dV/,

may be written

1da(v)+3T%[5(T\% _1}db(v)+ P(T,.v)

T, dvV 2 3T, dv T,
a=— (23)
(T \dza(v) 5% (1) db(V) T dP(T,.V)

LT ) LTJ V: TO av

Finally, our model expression for the Griineisen parameter, y = , 1s given by
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(TV5 vP(T,.V
KM_FEV]:% é 1 -1 db(V)+ (0’ )
T, dVv 2 3\ T, dv T,

3b(V) 3n

— 2 _J’_i

5 TA 2

V= (24)
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a(V) (kd/mol)
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Atom Pair | A (kJ/mol) | B (nm) |C(kJ*nm/mol)
Mg-Mg 7.12E+09 0.80 8.44E+03
Mg-Si 1.48E+11 0.63 1.43E+04
Mg-0 1.32E+07 1.78 2.63E+04
Si-Si 3.23E+13 0.46 2.43E+04

Si-O 2.03E+07 1.61 4.47E+04
0-0 2.61E+06 2.76 8.21E+04

Table 1. Parameters used to define the potential energy pairwise interactions given in text

eq (1). The values are from Matsui (1994, 1998)




MF-1
MF-2
MF-3
MF-4
MF-5
MF-6
MF-7

MF-8

MF-9
MF-10
MF-11
MF-12
MF-13
MF-14

MF-15
MF-16

MF-19
MF-20
MF-21
MF-22
MF-23
MF-24
MF-25

MF-17
MF-18

MF-26
MF-27
MF-28

Density (kg/m?) Temperature (K)

2753.832
2753.832
2753.832
2753.832
2753.832
2753.832
2753.832

3000.07
3000.07
3000.07
3000.07
3000.07
3000.07
3000.07

3075.071
3075.071

3150.073
3150.073
3150.073
3150.073
3150.073
3150.073
3150.073

3225.075
3225.075

3300.077
3300.077
3300.077

2120
2563
3059
3564
4030
4526
5037
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2570
3088
3528
4054
4559
5006

3046
3544

2132
2567
3079
3550
4051
4529
5043

3057
3612

2107
2606
3085

—I
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23
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29
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16
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31

21
23

15
18
20
24
26
31
34

20
24

15
19
21

Pressure (GPa)

2.45
3.84
5.38
6.88
8.3
9.8
11.39

5.93
7.78
9.8
11.51
13.54
15.45
17.17

11.28
13.35

8.96
10.92

13.2
15.32
17.53

19.6
21.81

15.1
17.77

12.28
14.9
17.41

—P

0.19
0.23
0.23
0.26
0.27
0.24
0.27

0.21
0.23
0.25
0.27
0.29
0.3
0.31

0.26
0.26

0.22
0.25
0.27
0.29
0.28
0.31
0.31

0.27
0.28

0.22
0.25
0.28

U

J/mol

185220
223930
267190
311290
352030
395360
439950

183400
224490
269710
308210
354130
398230
437290

266070
309540

186200
224210
268940
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353850
395640
440510
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MF-34
MF-35
MF-36
MF-37
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3500.081
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3800.088

3900.091
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19.85
22.4

24.79

27.23

17.68
20.94
24.17
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35.53

33.11
37.33
41.22
45
48.64
51.9

46.95
51.23
54.66
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63.59
68.2
73.17
77.25
81.56
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86.13
90.72
95.09
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0.31
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0.34
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0.36

0.32
0.32
0.36
0.37

0.33
0.34
0.36
0.37
0.38

0.36
0.33
0.39
0.41

310870
355600
397320
442050

183680
225890
270060
314090
351610
395360
438620

226170
268730
310450
354480
398580
440440

310590
356860
395990
441910

275590
314580
359380
398790
441770

319060
358750
399840
440860

2100
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2730
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1400
1540
1820
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2800
2870

1750
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2940

2310
2310
2590
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2520
2380
2800
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MF-59
MF-60
MF-61
MF-62
MF-63

4500.104
4500.104
4500.104
4500.104
4500.104

3193
3676
4085
4613
5053

36
31
30
32
34

90.78

96.17
100.61
106.14
110.53

0.33
0.32
0.37
0.39
0.39

278950
321090
356790
402920
441350

3150
2660
2590
2800
3010



Up (J/mol _up U (J/mol) DQx“gen (mZ/Sl QMagmium (mZ/S] Dsiticon (mzls)

-5355210 1400 -5169990 2.37434E-09 5.856E-09 1.74043E-09
-5302570 1540 -5078640 4.65097E-09 9.6692E-09 3.3592E-09
-5246360 1890 -4979170 7.59916E-09 1.43174E-08 5.52539E-09
-5192880 2030 -4881590 1.16015E-08 2.0195E-08 8.89266E-09
-5145140 2310 -4793110 1.4905E-08 2.47545E-08 1.14544E-08
-5097470 2520 -4702110 1.84103E-08 2.90117E-08 1.50583E-08
-5051690 3010 -4611740 2.28607E-08 3.41309E-08 1.80698E-08
-5375650 1400 -5192250 1.79283E-09 3.75576E-09 1.30934E-09
-5318250 1680 -5093760 3.77774E-09 6.99033E-09 2.7972E-09
-5259170 1890 -4989390 6.697E-09 1.07029E-08 5.28175E-09
-5211570 2100 -4903360 9.33912E-09 1.48319E-08 7.36443E-09
-5158370 2240 -4804240 1.20133E-08 1.98142E-08 9.5647E-09
-5109650 2520 -4711350 1.57584E-08 2.38756E-08 1.27229E-08
-5068000 2730 -4631060 1.901E-08 2.74967E-08 1.58046E-08
-5266170 1890 -5000100 6.09734E-09 9.731E-09 4.87107E-09
-5212620 2030 -4903080 8.39825E-09 1.40528E-08 6.54406E-09
-5376420 1330 -5190220 1.62793E-09 2.3748E-09 1.29742E-09
-5323010 1540 -5098800 3.44473E-09 6.12514E-09 2.69043E-09
-5264420 1750 -4995480 5.92494E-09 9.55997E-09 4.74721E-09
-5214020 2100 -4903920 8.45518E-09 1.31835E-08 6.84507E-09
-5161940 2240 -4808090 1.1062E-08 1.67539E-08 9.10913E-09
-5115880 2730 -4720240 1.38519E-08 2.11272E-08 1.1851E-08
-5067790 2940 -4627350 1.72488E-08 2.47995E-08 1.46251E-08
-5267570 1750 -5000520 5.27954E-09 8.62037E-09 4.11291E-09
-5207720 2100 -4892230 8.22271E-09 1.23452E-08 6.50486E-09
-5381110 1260 -5197080 1.22553E-09 2.23464E-09 9.61157E-10
-5318810 1610 -5091170 2.91619E-09 4.9308E-09 2.36622E-09

-5263930 1820 -4994430 4.88279E-09 7.47756E-09 4.05582E-09



-5212550
-5160190
-5111890
-5064010

-5376490
-5316920
-5257910
-5202260
-5156410
-5104610
-5056310

-5298370
-5237540
-5179930
-5123020
-5067440
-5017600

-5166700
-5104470
-5054000
-4997090

-5161450
-5102020
-5035730
-4980220
-4921980

-5053580
-4993030
-4932130
-4874730

2100
2310
2730
2870

1400
1540
1890
2170
2520
2800
2870

1750
1960
2170
2310
2590
2940

2170
2520
2730
2940

2520
2310
2590
2870
3010

2520
2380
2800
3150

-4901680
-4804590
-4714500
-4621960

-5192810
-5091030
-4987850
-4888170
-4804800
-4709250
-4617690

-5072200
-4968740
-4869480
-4768540
-4668860
-4577230

-4856110
-4747610
-4657940
-4555180

-4885790
-4787440
-4676350
-4581430
-4480140

-4734520
-4634280
-4532290
-4433870

7.38812E-09
9.49402E-09
1.22461E-08
1.49849E-08

7.77496E-10
1.95231E-09
3.51512E-09
5.5737E-09
7.8508E-09
9.59463E-09
1.21876E-08

7.70673E-10
1.81712E-09
3.19707E-09
4.94357E-09
7.22413E-09
8.76232E-09

2.71912E-09

4.40976E-09

6.01444E-09
7.6954E-09

5.09156E-10
1.29297E-09
2.48618E-09
3.61264E-09
5.49525E-09

8.79399E-10
1.85002E-09
3.12685E-09
4.18775E-09

1.11809E-08
1.42129E-08
1.83887E-08
2.20943E-08

1.44093E-09
3.2983E-09
5.7942E-09
8.50932E-09
1.16736E-08
1.4458E-08
1.85475E-08

1.45983E-09
3.13485E-09
5.27668E-09
8.10076E-09
1.11791E-08
1.34333E-08

4.52492E-09
6.79567E-09
9.08077E-09
1.18325E-08

1.03267E-09
2.35794E-09
4.15517E-09
6.19124E-09
8.45422E-09

1.61576E-09

3.01008E-09

5.00619E-09
6.4165E-09

5.86429E-09
8.07368E-09
1.06377E-08
1.27091E-08

6.61869E-10
1.65602E-09
3.03384E-09
5.03701E-09
7.11607E-09
8.66701E-09
1.11875E-08

7.16035E-10
1.73061E-09
3.11389E-09
4.65333E-09
6.94853E-09
8.30179E-09

2.5594E-09
4.26699E-09
5.81759E-09
7.47301E-09

5.41261E-10
1.30096E-09
2.46047E-09
3.70026E-09
5.61051E-09

8.97028E-10
1.86094E-09
3.09932E-09
4.31377E-09



-5064710
-4999610
-4942280
-4871510
-4814390

3150
2660
2590
2800
3010

-4785760
-4678520
-4585490
-4468590
-4373040

1.14329E-10
4.96024E-10
1.12865E-09
2.34535E-09
3.55809E-09

3.3152E-10
1.07583E-09
3.14279E-09
3.79356E-09
5.56731E-09

1.37657E-10
5.63635E-10
1.19913E-09
2.38497E-09
3.61505E-09



MF-1
MF-2
MF-3
MF-4
MF-5
MF-6
MF-7

MF-8
MF-9
MF-10
MF-11
MF-12
MF-13
MF-14

MF-15
MF-16

MF-17
MF-18
MF-19
MF-20
MF-21
MF-22
MF-23

MF-24
MF-25

MF-26
MF-27
MF-28

Density (ka/m®) Temperature (K)

2753.832
2753.832
2753.832
2753.832
2753.832
2753.832
2753.832

3000.07
3000.07
3000.07
3000.07
3000.07
3000.07
3000.07

3075.071
3075.071

3150.073
3150.073
3150.073
3150.073
3150.073
3150.073
3150.073

3225.075
3225.075

3300.077
3300.077
3300.077

Pressure (GPa)

Thermal Pressure (GPa/K’

2120
2563
3059
3564
4030
4526
5037

2100
2570
3088
3528
4054
4559
5006

3046
3544

2132
2567
3079
3550
4051
4529
5043

3057
3612

2107
2606
3085

2.45
3.84
5.38
6.88
8.3
9.8
11.39

5.93
7.78
9.8
11.51
13.54
15.45
17.17

11.28
13.35

8.96
10.92
13.2
15.32
17.53
19.6
21.81

15.1
17.77

12.28
14.9
17.41

0.003137698
0.003121268
0.003037568
0.003008754
0.003035702
0.00306787
0.003111546

0.00393617
0.003917892
0.003892989

0.00387284
0.003820747
0.003815026
0.003847875

0.004156627
0.004156627

0.004505747
0.004479436
0.004477093
0.00445612
0.004370861
0.004315077
0.004299611

0.004810811
0.004810811

0.005250501
0.005245292
0.005193881

—ThP

0.000694696
0.000485446
0.000491449
0.000549284
0.000567805
0.000539127
0.000378752

0.000694541
0.000489988
0.000561258
0.000595174
0.000592161
0.000676884
0.000515975

0.00078277
0.00078277

0.000803104
0.00055142
0.000584834
0.000620748
0.000640812
0.000665905
0.000467874

0.00075135
0.00075135

0.000714323
0.000552345
0.000623156



MF-29
MF-30
MF-31
MF-32

MF-33
MF-34
MF-35
MF-36
MF-37
MF-38
MF-39

MF-40
MF-41
MF-42
MF-43
MF-44
MF-45

MF-46
MF-47
MF-48
MF-49

MF-50
MF-51
MF-52
MF-53
MF-54

MF-55
MF-56
MF-57
MF-58

3300.077
3300.077
3300.077
3300.077

3500.081
3500.081
3500.081
3500.081
3500.081
3500.081
3500.081

3800.088
3800.088
3800.088
3800.088
3800.088
3800.088

3900.091
3900.091
3900.091
3900.091

4200.098
4200.098
4200.098
4200.098
4200.098

4350.101
4350.101
4350.101
4350.101

3559
4071
4549
5061

2103
2586
3092
3596
4025
4526
5022

2589
3077
3554
4058
4563
5042

3556
4085
4534
5059

3155
3601
4114
4556
5058

3653
4107
4577
5047

19.85
22.4

24.79

27.23

17.68
20.94
24.17
27.3
29.86
32.8
35.53

33.11
37.33
41.22
45
48.64
51.9

46.95
51.23
54.66
58.51

63.59
68.2
73.17
77.25
81.56

81.46
86.13
90.72
95.09

0.005064074
0.004990234
0.004882813
0.004765625

0.006749482
0.006566441
0.006296858
0.006088842
0.005917815
0.005686148
0.005504032

0.008647541
0.008401339
0.007827568
0.00735396
0.007006883
0.006805846

0.008090737
0.007864968
0.007486266
0.007333333

0.010336323
0.010012216
0.009459439
0.008908213
0.008585657

0.010286344
0.010026151
0.009531915
0.009297872

0.000637538
0.000666375
0.00069879
0.0004898

0.000828747
0.000590324
0.000614143
0.000718394
0.000768452
0.000762777
0.00055408

0.000974752
0.000711965
0.000734897
0.000771127
0.000847389
0.00062781

0.001036711

0.000828731
0.00087355

0.000587355

0.001394063
0.000924144
0.000955287
0.000991395
0.000662179

0.001390614
0.000983895
0.001036323
0.000767703



MF-59
MF-60
MF-61
MF-62
MF-63

4500.104
4500.104
4500.104
4500.104
4500.104

3193
3676
4085
4613
5053

90.78
96.17
100.61
106.14
110.53

0.01115942
0.010855746
0.010664615
0.010225379
0.009977273

0.001435297
0.001655771
0.001064808
0.001058996
0.000820396



Beta (GPa™)

0.024594804
0.021723329
0.019364235
0.018485943
0.016333954
0.015148658
0.014807944

0.019460138
0.01811534
0.017924008
0.015550178
0.013984309
0.013237343
0.012296219

0.014324563
0.012797916

0.014981839
0.013338676
0.01246654
0.010759667
0.010723866
0.010169842
0.009449567

0.011035434
0.010277263

0.0122564
0.010624168
0.009284834

—Beta

0.001997815
0.001790098
0.001485542
0.001493835
0.00061643
0.001028189
0.00105127

0.001335342
0.001300599
0.002431013
0.001909742
0.000925372
0.000868174
0.000769702

0.002189036
0.001815701

0.001025667
0.000916582
0.001746567
0.001363218
0.000694707
0.000668005
0.000591191

0.001427352
0.001294507

0.000657765
0.000555209
0.000784751

Alpha (K1)

7.71711E-05
6.78043E-05
5.88202E-05
5.56196E-05
4.9585E-05
4.64741E-05
4.60756E-05

7.65984E-05
7.09739E-05
6.9778E-05
6.02233E-05
5.34305E-05
5.05008E-05
4.73143E-05

5.95419E-05
5.31962E-05

6.75044E-05
5.97497E-05
5.58139E-05
4.79464E-05
4.68725E-05
4.38837E-05
4.06295E-05

5.30894E-05
4.9442E-05

6.43522E-05
5.57269E-05
4.82243E-05

—alpha

1.82E-05
1.1934E-05
1.0532E-05
1.1104E-05
9.4614E-06
8.755E-06
6.4927E-06

1.4502E-05
1.0235E-05
1.3812E-05
1.1847E-05
9.0042E-06
9.5527E-06
7.0018E-06

1.444E-05
1.2543E-05

1.2889E-05
8.4236E-06
1.0691E-05
9.0284E-06
7.5129E-06
7.3601E-06
5.0998E-06

1.0766E-05
9.9202E-06

9.4116E-06
6.5511E-06
7.0774E-06

Cv (J/mol K]

Cv

206.203278
203.371678
196.881841
191.545399
186.665513
180.154687
176.845544

209.548723
205.515457
198.500374
191.977802
186.186859
181.776264
179.615857

194.815123
194.815123

210.156438
205.974505
198.091666
192.832063
187.528029
182.249341
180.715991

195.112957
195.112957

212.239963
207.099039
198.814524

5.60500288
7.91705519
8.17101101
9.36542118
10.2912468
10.6534179
7.73271953

5.5373216
7.91341941

9.1807489
9.61749482
9.51226827
11.0928901
8.52873359

6.09184992
6.09184992

5.65991122
7.75566256
8.34733343
9.33727174
10.3014818
11.2214416
8.08842379

5.49146273
5.49146273

5.14808168
7.88321414
8.88645879

Gamma

0.7773942
0.78409086
0.78821758
0.80249197
0.83084656
0.86999577
0.89889278

0.880888
0.89400473
0.91971583
0.94604183
0.96234565
0.98422008
1.00463451

0.97617216
0.97617216

0.95756161
0.97129798
1.0094215
1.03209626
1.04098242
1.05746313
1.06261314

1.07561185
1.07561185

1.05466064
1.07976877
1.1137381

—gamma

0.17340972
0.12571052
0.13165488
0.15166781
0.16201383
0.16131118
0.11626283

0.15716695
0.11698736
0.13925284
0.15291646
0.15704452
0.18466652
0.14291155

0.18634842
0.18634842

0.1726131
0.12503535
0.13854981
0.15221178
0.16297984
0.17569773
0.12503007

0.17069451
0.17069451

0.14574774
0.12090349
0.14259653



0.009211067
0.008638374
0.008072489
0.007763069

0.010893211
0.007976115
0.007271837
0.00675652
0.006430378
0.006081053
0.005877707

0.00675364
0.004731344
0.005128685
0.004716351
0.004711554

0.00440867

0.003941054
0.003731041
0.003726244
0.003535704

0.00380808
0.003008486
0.003005028
0.002903342
0.002870341

0.002463486
0.002510914
0.002384394
0.002377873

0.00080034
0.000427771
0.000398818
0.000382836

0.0006712
0.000249219
0.00021862
0.00019663
0.000189413
0.000183343
0.000176117

0.000215493
7.23378E-05
0.000231847
0.000206082
0.000230731
0.000202006

0.000139939
0.00013119
0.000146174
0.000132006

6.26027E-05
6.99132E-05
6.93284E-05
7.09064E-05
7.19191E-05

6.07502E-05
6.36266E-05
6.35116E-05
6.52187E-05

4.66455E-05
4.31075E-05
3.94165E-05
3.69959E-05

7.35235E-05
5.23747E-05
4.57897E-05
4.11394E-05
3.80538E-05
3.45778E-05
3.23511E-05

5.84024E-05
3.97496E-05
4.01451E-05
3.46839E-05
3.30133E-05
3.00047E-05

3.1886E-05
2.93445E-05
2.78957E-05
2.59285E-05

3.93615E-05
3.01216E-05
2.84259E-05
2.58636E-05
2.46438E-05

2.53403E-05
2.51748E-05
2.27278E-05
2.21092E-05

7.1352E-06
6.1395E-06
5.9676E-06
4.2174E-06

1.0101E-05
4.9848E-06
4.6733E-06
4.,9993E-06
5.067E-06
4.7542E-06
3.3979E-06

6.8418E-06
3.4229E-06
4.1832E-06
3.94E-06
4.3074E-06
3.0905E-06

4.2397E-06
3.2596E-06
3.4341E-06
2.2913E-06

5.348E-06

2.867E-06
2.9446E-06
2.9469E-06
1.9985E-06

3.4823E-06
2.5515E-06
2.5441E-06
1.9236E-06

192.647898
189.046824
184.603559
180.738334

210.720144
207.31442
200.841128
196.052541
192.523008
187.653667
184.592838

212.003676
210.045741
204.180657
198.827718
194.336107
191.290284

205.099596

202.402903

197.717684
195.72916

220.510993
218.528042
215.645821
208.257579
201.768606

220.788244

218.891808

213.197582
209.39979

9.28763689
10.3225975
11.2909881
7.99148056

5.09245476
7.45453105
8.40676242
10.7815386
11.9485627
11.8629131
8.55367851

6.62066222
9.93664721
10.4092943
10.7547354
12.0078746
9.05396807

7.42243021
12.0089357
12.7547651
8.57682722

9.62848994
12.6602942
13.3279601
14.0748918
9.38313851

18.9164465
18.9523834
20.2389315
21.4596373

1.12066273
1.12535803
1.12763652
1.12410984

1.28750685
1.27316783
1.26024913
1.24838156
1.23556005
1.21799703
1.19853648

1.51014557
1.48082653
1.41932495
1.36934832
1.33487608
1.31722132

1.42302254
1.40174397
1.36586638
1.35155705

1.57014452
1.53471184
1.46935978
1.43282648
1.42535737

1.50677697

1.48138724

1.44597829
1.4360555

0.15107601

0.16235348
0.1754991

0.12577127

0.16112164
0.12327394
0.13375578
0.16250443
0.17782581
0.18062394
0.13282283

0.17663594
0.14372069
0.15163257
0.16156656
0.18128574
0.13656929

0.18947254
0.16950724
0.18211356
0.12339367

0.22258747
0.16724837
0.17397091
0.18655962
0.12837008

0.24116414
0.19386792
0.20870289
0.18899217



0.0024511
0.002304432
0.002341036
0.002198327
0.002195479

7.7737E-05
7.54346E-05

4.0066E-05
7.86073E-05
8.04392E-05

2.60342E-05
2.50163E-05
2.49662E-05
2.24787E-05
2.19049E-05

4.6540E-06
3.9025E-06
2.5291E-06
2.4629E-06
1.9719E-06

222.028986
227.452363
224.424578
219.275627

24.7844359
23.990557

21.1830736
20.660228

1.51711746

1.49214109
1.4856464

1.45790667

217.15446 23.0432815 1.43642769

0.31695347
0.27670595
0.20412467
0.20412398
0.19283223



Do (mM?/s)

E* (kJ/mol) vo  (cm3/mol) vi* (cm*/mol*GPa) or no (Pa s) R?

@) 75.636 1.315 -3.375E-03 2.089E-07
Mg 66.530 1.421 -5.046E-03 2.561E-07
Si 79.246 1.103 -2.584E-03 1.739E-07
viscosity 41.018 1.455 -4.777E-03 4.549E-04

Table 4. Parameters for self-diffusivities of O, Mg and Si are based on eq (5) in text;
shear viscosity is based on eq (6). Numerical values for E* and V* in the table are given
in rational units for ease of interpretation. Note that numerical values should be converted
to SI units (m” for volume, J for energy and Pa for pressure) when computing values at
specific p-T points. No unit conversions are required for the pre-exponential terms D, and

No-

0.988
0.988
0.980
0.998



p b(V) o a(v) o

Gl (et

K mol mol
2753.83 4.518 0.011 -5803.4 1.5
3000.07 4.569 0.0043 -5825.9 0.58
3075.07 4.574 -5829.2
3150.07 4.595 0.0067 -5833.4 0.91
3225.08 4.608 -5836.1
3300.08 4.644 0.0099 -5839.7 1.3
3500.08 4.744 0.024 -5845.9 3.3
3800.09 5.122 0.016 -5871.2 2.3
3900.09 5.330 0.0084 -5886.8 1.3
4200.10 5.835 0.021 -5895.6 32
4350.10 6.094 0.015 -5890.3 2.3
4500.10 6.388 0.011 -5880.0 1.7

Table 5. Coefficients for the Rosenfeld-Tarazona (1998) model expression for the
potential energy of a dense fluid: U (V,T)=a(V)+b(V)T** . Model equations are
compared to MD simulation data in Fig. 12.



i a(V) b(V)

=) (e
mol K" mol

0 19790.2 52.7838
1 -437356. -471.962
2 3046190. 1706.03

3 -11179100. -2690.69

4 23103100. 1553.34

5 -26316700.

6 14597600.4

7 -2621980.

Table 6. Polynomial parameterizations of the Rosenfeld-Tarazona (1998) functions for
the potential energy: a(V)= Y a,V' and b(V)=> _bV'. Vhas units cm’/gm or 1000 x
0 0

the quantity in units of m*/kg. See Fig. 13.



Parameter Value Units

v, 8.08642x10™*  m’[kg
K, 0.131575 GPa
e 11.8272

\4

Table 7. Parameterization of the Universal EOS (Eq. 9) along the nominal 3500 K
isotherm (7, = 3582.75 + 45.75 K). The standard error on residuals for pressure

recovery from this EOS is 0.059 GPa.



