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Accurate computation of shear viscosity from equilibrium
molecular dynamics simulations
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The accuracy of the Green–Kubo formulation for computing shear viscosity from equilibrium molecular dynamics
simulations depends on the quality of the potential and on how the viscosity computation is carried out. We examine the role
of the duration of the simulation, the number of particles used, and how the correlations are accumulated on the accuracy of
the computed viscosity. We propose as a measure of the accuracy the standard deviation of five independently computed shear
viscosity values based on independent components of the stress tensor. Using this measure, we examine the shear viscosity
calculation for molten NaCl to determine the values of the run length, window width, and spacing between windows and
obtain a good compromise between calculation time and viscosity quality. Significantly we note that even though viscosity
can be calculated using relatively few particles, reducing state point uncertainty requires more, rather than less, particles.
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1. Introduction

Some of the methods for computing shear viscosity

include Enskog theory [1], non-equilibrium molecular

dynamics (NEMD), the Stokes–Einstein equation, and the

Green–Kubo expression [2]. The Green–Kubo (GK)

expression for the shear viscosity is given by integration of

the stress (pressure) autocorrelation function. In particular,

the shear viscosity is computed according to

h ¼
V

3kBT

ð1
0

X
x,y

PxyðtÞPxyð0Þ

* +
dt ð1Þ

where h is the shear viscosity, V is the volume of the

system, T is the temperature, kB is Boltzmann’s constant,

and Pxy refers to the xy component of the stress. The GK

formulation utilizes a single summation that consolidates

the contributions of all the atoms into a single

autocorrelation function

CxyðtÞ ¼
X
x,y

PxyðtÞPxyð0Þ

* +
: ð2Þ

This allows the formulation to be used with molecular

dynamics simulations whereas alternative formulations

based on particle displacement require translational

invariance, an assumption violated in MD simulations

utilizing periodic boundary conditions. The angle brackets

around the summation in equation (2) refer to an average

of a ‘sufficiently large’ number of samples [3]. Four other

independent estimates of the shear viscosity can be

computed from the remaining off-diagonal and normal

components of the stress Pxz. To study the optimal way to

implement equation (1), it is useful to refer to specific

quantities illustrated schematically in figure 1. These

quantities include the duration of the MD simulation, tD,

the time ‘window’ over which the autocorrelation C (t) is

computed, tW, and the time interval between the start of

successive time windows, tS. These quantities are related

to each other and the number of time origins, nO, used in

the summation according to

nO ¼ 1 þ
tD 2 tW

tS

� �
ð3Þ

where the operation implied by the square brackets returns

the integer part of the quotient. Since for GK computation

of viscosity, tD is of order a few ns, and tW is a few ps, nO
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reduces to

nO ¼ nW <
tD

tS

� �
ð4Þ

In this investigation we determine the dependence of

the shear viscosity on tD, tS and tW and N, the number of

particles used in the simulation, in order to deduce the

most efficient and accurate method for computation of the

shear viscosity by the Green–Kubo formulation. In order

to gauge the effects of simulation duration, window width

and number of origins on the precision of the viscosity, a

measure of the error of the viscosity is introduced. We

exploit the fact that each of the five independent

components of the stress tensor (i.e., Pxy, Pxz, Pyz, Pxx 2

Pyy, and Pyy 2 Pzz) provides an independent estimate of

the shear viscosity. We define the fractional error, j, as the

root mean square of the ‘component’ deviations from the

average shear viscosity, hAVE, divided by the average

viscosity according to

j¼
1

hAVE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhXY 2hAVEÞ

2 þðhXZ 2hAVEÞ
2 þðhYZ 2hAVEÞ

2 þðhXXYY 2hAVEÞ
2 þðhYYZZ 2hAVEÞ

2

5

s
ð5Þ

where hAVE is the arithmetic mean of the five

independently determined viscosity estimates hxy, hxz,

hyz, hxxyy and hyyzz.

The accuracy of the shear viscosity in the sense of

comparison with laboratory values depends obviously on

the quality of the potential. Here we study molten NaCl

because it is a simple material for which an accurate

effective pair potential exists. Although the point of this

investigation is not to find a better description of the pair

potential applicable to NaCl, it is informative to compare

MD computed values with laboratory data [5]. The

methodology developed in this study is directly applicable

to determination of shear viscosity in other materials

including molten geoliquids at conditions of elevated

temperature (2000–5000 K) and pressure (0–135 GPa)

relevant to geophysical studies of the earth’s partially

molten interior.

2. Model and simulation parameters

For this investigation, NaCl was simulated using the

potential form

fijðrijÞ ¼
qiqj

rij
þ Aij exp

2rij

Bij

� �
2

Cij

r 6
2

Dij

r 8
ð6Þ

This form has been shown to describe the alkali halides

quite well [6–8]. The numerical values of the parameters

used are given in table 1. The MD code utilized was a

modified version of the Large-scale Atomic/Molecular

Massively Parallel Simulator (LAMMPS) [9]. The pair

potential has contributions from Coulombic forces, Born–

Mayer exponential electron repulsion (table 1), dipolar

and quadrupolar terms. Long-range Coulomb terms were

computed using the Particle–Particle Particle–Mesh K-

space solver with a precision of one part in 10,000. Short-

range Coulombic interactions, Born–Mayer repulsions,

and dipolar and quadrupolar forces are calculated directly

within a 0.6 nm (6 Å) radial cutoff in direct space.

The simulations were carried out in the NEV

(microcanonical ensemble) with the numbers of particles

Figure 1. Schematic diagram illustrating the relationship between the time intervals used to compute the shear viscosity from MD simulation data using
the Green–Kubo formulation. tD refers to the total duration of the simulation. The autocorrelation functions for the stress components Pxy, Pxz, Pyz,
Pxx 2 Pyy and Pyy 2 Pzz are each partitioned into multiple windows of duration tW and have their origins separated from one another by tS. The number of
time origins (equal to the number of windows) is given exactly by equation (3) and approximately by equation (4).

Table 1. Potential parameters for NaCl used in this study.

Species Aij ( £ 1027 Jmol21) Bij ( £ 1011m) Cij ( £ 1052 Jm6mol21) Dij ( £ 1073 Jm8mol21)

NaZNa 4.040947 3.174603 1.011070 4.814617
NaZCl 11.948257 3.174603 6.740466 83.653976
ClZCl 33.120536 3.174603 69.811965 1402.257558

D. Nevins and F. J. Spera1262
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8 ranging from 258 to 25,800. Ion positions are updated

using the leapfrog Verlet scheme with a timestep of 1

femtosecond (fs). Initial conditions were developed using

the skew-start methodology [10] with an initial tempera-

ture distribution of 5000 K. Upon removal of net

momentum, temperature was held to 5000 K by velocity

scaling for 10 ps. The system was cooled from 5000 K to

the target temperature of 1400 K using the “slow” cooling

schedule (0.5 £ 1013 K s21) adopted by Matsui and

Kawamura [11]. The liquid was then held at 1400 K for

150 ps to achieve thermal equilibrium by velocity scaling.

At thermal equilibrium, velocity scaling was turned off

and production runs of duration tD 2–10 ns were carried

out. Potential and kinetic energy, temperature, isochoric

heat capacity and the stress components Pxx, Pyy, Pzz, Pxy,

Pxz and Pyz were computed and saved every timestep.

For N ¼ 25,800 particles (12,900 NaCl ‘molecules’) at

1379.3 kg m23 and using tD ¼ 2 ns, tW ¼ 2 ps, and tS of

10 fs, the simulated temperature was 1410 ^ 19 K. Pressure

was 197.6 ^ 21.0 MPa and the viscosity was 0.692 MPa s.

This compares favourably with the laboratory results for

NaCl summarized extensively by Janz [5] who reports a

density of 1377.6 kg m23 and a viscosity of 0.614 MPa s at

1400 K and 0.1 MPa. Our slightly higher computed density

is consistent with the higher pressure of the MD simulation

compared to the laboratory measurement.

3. Results and discussion

3.1 Selection of window width (tW)

When computing the autocorrelation function C(t), tW
(figure 1) must be chosen. tW should be long enough to

capture the decay of C(t) in its entirety but not so long that

the noise added to the correlation signal contaminates the

intrinsic value of the stress autocorrelation function.

Figure 2 shows a typical autocorrelation C(t) for the off-

diagonal pressure Pxy. C(t) decays rapidly towards zero

and, after about 1 ps, C(t) exhibits small amplitude

oscillations around zero (figure 2). The rate of the descent

toward zero differs for each of the autocorrelations and for

each run. We have chosen to cut off the contribution of

C(t) at the time step where the slowest decaying C(t)

functions falls below 0.005. In practice, this value varied

from about 0.56–1.35 ps. In order to have a uniform

window width, a conservative value of 2 ps is adopted and

used throughout the rest of this study.

3.2 Role of simulation duration (tD)

To examine the effects of changing run duration tD on

computed viscosity, the window width (tW) and spacing

(tS) were set equal to 2 ps and 0.01 ps, respectively. The

number of windows and the simulation duration are linked

through equation (2) and are not independent at fixed tS.

Figure 3 shows the variation of j, the fractional error

defined by equation (5) plotted against tD. The average

deviation in the tD interval 20–100 ps is < 25% whereas

for the longest simulation duration (10 ns), the deviation is

, 5%. Simulations of durations of less than ,1.0 ns

generate significant differences in viscosity values from

each autocorrelation and are consequently unsuitable for

determining of viscosity. Alternatively, not much

additional reduction in j occurs for durations greater

than about 2 ns, although the computation time increases

considerably. The effect of the run duration, tD, is also

Figure 2. Off-diagonal stress autocorrelation function Cxy(t) vs. time for N ¼ 2580 particles at 1418 K (^18 K), 202.9 MPa (^46.6 MPa) and density
of 1379.3 kg m23.

Shear viscosity accuracy 1263
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apparent in the value of the average viscosity. As shown in

the inset to figure 3, the average viscosity computed for the

short duration tD ¼ 0.02 ns run does not approach an

asymptotic limit like the viscosity value computed for

tD ¼ 10 ns. In summary, the combination of a stable hAVE

combined with small j suggests a run length of ,2 ns is a

good compromise between accuracy and computational

cost. In terms of nO, the number of origins, tD ¼ 2 ns

corresponds to 200,000 time origins (windows) when the

interval between successive windows (tS) is 0.01 ps.

3.3 Role of temporal spacing between time origins (tS)

In order to test the effect of changing tS, the interval

between successive time origins on the fractional error j, a

series of simulations was carried out at constant

tD ¼ 10 ns. The window spacing tS was varied from 1 fs

to 100 ps. From equation (4) it is clear that at const tD, the

number of time origins (nO) is not independent of the

window spacing, tS.

Figure 4 shows that to obtain j , 2% the window

spacing must be tS smaller than ,100 fs. Smaller values

do not lead to any reduction in j. A value of tS ¼ 10 fs is a

good choice to maintain a small error, j, while minimizing

computational time.

3.4 Role of system size (particle number)

It has been claimed [4] that increasing the numbers of

particles (N) has no effect on improving the quality of the

Green–Kubo shear viscosity calculation. We have tested

this by studying the effect of varying N at fixed values of

tD (10 ns), tW (2 ps) and tS (10 fs). The relationship

between fractional error, j and particle number is depicted

in figure 5.

Indeed, there is no correlation between N and j. N varies

by a factor of 100 from N ¼ 258 to 25,800 and there is no

systematic improvement (decrease) in j. The same effect

is seen for the average viscosity; increasing N does give

rise to asymptotic behaviour in hAVE. Although tempting

to conclude that increasing N has little effect on the

computed viscosity value, this conclusion is not

warranted. The reason is the as follows. It is well known

[12] that the fluctuations in pressure (sP) and temperature

(sT) during a NEV MD simulation scale as N 21/2. This is

shown in figure 6 by plotting sT=T̂, the temperature

fluctuation (sT) divided by the mean temperature T̂ of the

run, and the analogous quantity for pressure, sP=P̂, against

N. It is clear from figure 6 that the uncertainty in

temperature and pressure of an MD simulation depends on

N as expected. For example, for N ¼ 500 particles the

temperature and pressure of the simulation are known to

within 3 and 50%, respectively. For a simulation carried

out at a typical geophysically relevant state point of, say,

3500 K and 10 GPa, the uncertainties in temperature and

pressure are ^100 K and ^4.8 GPa, respectively. The

large uncertainty in pressure renders almost meaningless

any attempt to determine the equation of state for a high-

pressure geomaterial, for example. In contrast, a

simulation with N ¼ 10,000 particles at the same state

point carries with it an error in temperature and pressure of

^45 K and ^1 GPa, respectively. Because there is a one-

to-one mapping between a state point and the shear

viscosity, simulations run with large N are clearly superior

than those with small N since the uncertainties of the state

point are smaller in the former than in the latter case.

Figure 3. Fractional RMS error, j and component–averaged shear viscosity, hAVE for 12,960 particles (N ¼ 12 960) at 1424 K (^17 K), 175.8 MPa
(^24.6 MPa) and r ¼ 1379.3 kg m23 for simulation durations tD ranging from 0.02 to 10 ns. A simulation duration tD ¼ 2 ns is a good compromise
between accuracy and computational cost. The inset shows that asymptotic shear viscosity values are not obtained in short duration experiments.

D. Nevins and F. J. Spera1264
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4. Conclusions

Systematic study of implementation of the Green–Kubo

method for determination of the shear viscosity reveals the

parameters that are most cost-effective. Because each

independent component of the stress tensor enables one to

compute an estimate of the shear viscosity, and because

these values must, in a real fluid, converge to a single value,

a natural criterion of accuracy can be exploited. Using this

metric, we studied the effect of simulation duration, tD,

width of the correlation window, tW and the temporal

spacing between time origins, tS. We find that a set of

optimal values that effectively trade off accuracy with

computational cost are tD ¼ 2 ns, tW ¼ 2 ps and tS ¼ 10 fs.

Although for different materials with different potential

forms or parameters these specific temporal factors might

Figure 5. Fractional RMS error, j and average shear viscosity as a function of N (particle number) at 1399 K (^79 K), 182.4 MPa (^165.7 MPa) and
r ¼ 1379.3 kg m23. Simulation duration tD ¼ 2 ns, tW ¼ 2 ps and tS ¼ 10 fs for all calculations. Although there is no obvious dependence of j on N, it
should be emphasized that the fluctuation in temperature (sT) and pressure (sP) scale as N 21/2. In order to assign a shear viscosity to a specific well-
known temperature and pressure, large N simulations are required (figure 6).

Figure 4. Fractional RMS error, j for N ¼ 12,960 at 1424 K (^17 K), 175.8 MPa (^24.6 MPa) and r ¼ 1379.3 kg m23 vs. the number of time origins
(nO) or the time spacing, tS, between successive time origins used in calculation of the autocorrelation function. At least 100,000 origins or (tS ¼ 10 fs)
are needed to develop adequate statistics for determination of shear viscosity. Run duration is tD ¼ 10 ns and window width tW is at 2 ps.

Shear viscosity accuracy 1265



D
ow

nl
oa

de
d 

B
y:

 [C
D

L 
Jo

ur
na

ls
 A

cc
ou

nt
] A

t: 
22

:4
4 

20
 M

ay
 2

00
8 

change, the methodology developed in this study remains

[13]. Although j does not depend on the number of particles

in the simulation, the fluctuations in temperature and

pressure of the run, and hence the uncertainty of the state

scale as N 21/2. Hence, a viscosity computed by the GK

method cannot be reliably placed in the context of material

behaviour unless the state point is known well. This

requires a relatively large number of particles.
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