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Abstract: In this work, we demonstrate a remarkable change of chemical trend of Iron under high 

pressure that is of great importance for understanding the distribution of elements in the Earth’s 

mantle and core. Using first principles crystal structure search method, we conduct a systematic 

study of the propensity of p-block elements to chemically bind with iron under high pressures 

ranging from ambient conditions to that of Earth’s core. We show that under increasing pressure, 

iron tends to reverse its chemical nature, changing from an electron donor (reductant) to an electron 

acceptor, and oxidizes p-block elements in many compounds. Such reverse chemistry has a 

significant impact on the stoichiometries, bond types and strengths, structures and properties of 

iron compounds under deep planetary conditions. 
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1. Introduction 

The distribution and abundance of both major and trace elements in the Earth’s interior provide a 

record of its formation and evolution [1,2]. An understanding of this record demands knowledge 

of the chemical affinity of the elements and their compounds under the high-pressure conditions 

of Earth’s interior. For many years, our understanding of such affinities has been predominantly 

biased by low-pressure observations that are of dubious applicability to Earth’s deep mantle and 

core [3]. Many trace elements are found to have greatly reduced concentrations on Earth relative 

to their solar abundance [4], [5]. This is usually explained in terms of either the escape of elements 

to space due to volatility during the high-energy conditions of terrestrial accretion [3], or the 

incorporation into the Earth’s core [6].  The core sequestration model relies on the reactivity of 

trace elements with Fe (and Ni) under high pressure, which is problematic to assess due to the 

difficulty of experimentally achieving terrestrial core pressures (135-367 GPa).  

 

Thanks to improvements in computational power and methods, the high-pressure chemistry of Fe 

has become accessible, leading to the discovery of a number of new Fe compounds with trace 

elements that supports the argument that they are incorporated in the core. For example, recent 

work showed that iron may actually bind strongly with xenon to form an Fe3Xe compound at the 

pressures of Earth’s core, suggesting that core sequestration is the cause of the “missing xenon 

paradox” [7,8]. A similar mechanism was suggested for the depletion of iodine in Earth [9], 

although the volatility of the iodine renders this explanation ambiguous. The reactions of Fe with 

major elements such as O also becomes quite unusual at very high pressure. As revealed by both 

computer simulation and diamond anvil cell (DAC) experiments, iron can form an oxygen-rich 

FeO2 compound at the pressures of Earth’s lower mantle, even if it remains in the low oxidation 

state of +2. [10] We show here that these striking phenomena are all related to dramatic changes 

in ‘iron chemistry’ under high-pressure. The broad-ranging chemical trends of iron can only be 

revealed by a large-scale study of iron reactivity across the periodic table, a task that cannot be 

performed experimentally with reasonable resources and time.  

 

Many recent studies show that first principles structure predictions are sufficiently advanced that 

enthalpies of compound formation at high pressure can be accurately calculated and the nature of 

the chemical bond elucidated [7–15]. Using this approach, we have systematically explored the 
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bonding of iron with p-block elements in the periodic table. High pressure greatly enhances 

bonding to iron for many p-block elements that are conventionally labeled lithophile or 

chalcophile [1,16], making them highly siderophile. However, the depletion of the p-block 

elements in silicate Earth correlates inversely with Fe binding strength. This striking result 

suggests that although the Earth’s core can host large quantities of the p elements, it is not the 

cause of their depletion. Instead, cosmochemical accretion models that call on elemental loss by 

volatility during high-energy conditions of terrestrial accretion may be more relevant [17]. 

Furthermore, silicon shows a distinct anomaly in its bonding to iron, such that it becomes one of 

the strongest under high pressure, which suggests silicon may readily be incorporated into Earth’s 

core, corroborating recent perspectives on the composition of Earth’s core based on sound speed 

measurements, experimental petrology and seismology [18,19].  
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Fig. 1. Thermodynamic stability of main p-block – iron compounds at both ambient and high 

pressures. Most structures at ambient pressure are chosen from Materials Project [20]. Most 

structures of FemXn (m/n=1–3) at high pressures are obtained from crystal structure searches using 

CALYPSO (details are shown in Methods). Convex hulls are shown as solid lines, with stable 

compounds shown by solid symbols. Unstable compounds (open symbols) sit above convex hulls, 

with dotted lines indicating possible decomposition routes.  

2. Computational methods 

We performed structure predictions through a global minimization of free energy surfaces based 

on the CALYPSO (Crystal structure AnaLYsis by Particle Swarm Optimization) methodology as 

implemented in CALYPSO code [21,22]. We searched the structures of stoichiometric FemXn (m 

= 1−3; n = 1−3) with simulation cell sizes of 1−4 formula units (f. u.) under pressures of 150 GPa 

and 300 GPa, respectively. All the structures are optimised at a higher accuracy. The calculations 

for local structural relaxations and electronic properties were performed in the framework of 

density functional theory within the generalized gradient approximation Perdew-Burke-Ernzerhof 

(GGA-PBE) [23] and frozen-core all-electron projector-augmented wave (PAW) method [24,25] 

as implemented in the VASP code [26]. A cutoff energy of 700 eV and appropriate 

Monkhorst−Pack [27] k-mesh with k-points density 0.03 Å-1 were chosen to ensure that all the 

enthalpy calculations were well converged to less than 1 meV/atom. For the most stable structures 

at each pressure, the formation enthalpy per atom is calculated using the following formula:  

Hf (FemXn)= [H(FemXn)− mH(Fe)− nH(X)]/(m+n) 

where Hf is the formation enthalpy per atom and H is the calculated enthalpy per chemical unit for 

each compound. The enthalpies for Fe and X are obtained from the most stable structures as 

searched by the CALYPSO method at the desired pressures.  

3. Results and discussion 

Our calculations reveal that pressure can dramatically increase the stability of iron compounds 

formed with most p-block elements as evidenced by a significant decrease of formation enthalpy 

(Fig. 1). This pressure-enhanced Fe reactivity may promote the incorporation of many p-block 

elements, especially the heavier ones that were previously disregarded due to their weak or absent 

binding with Fe, into Earth’s core. Like the previous works, our results first appear to support the 
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model of core sequestration, i.e. the depletion of certain elements in the silicate Earth is due to 

their incorporation into Earth’s core. However, the integrated picture that compares the abundance 

of elements and their binding strength with Fe across the p-block of the periodic table shows the 

opposite trend. The p-block element abundances, normalized to CI chondrites, are inversely 

correlated with their binding strength to Fe as quantified by the formation enthalpies of the most 

stable compounds (Figs. 2a – 2c), i.e. the stronger they bind with Fe the less they are depleted in 

the silicate Earth. While pressure increases, the correlation represented by the shaded stripes 

becomes steeper due to stronger binding to Fe (more negative enthalpy of formation) for the 

heavier elements such as Se, Te, Bi, Pb etc. This inverse correlation clearly shows that reaction 

with Fe in Earth’s core is unlikely to be the cause of the depletion of trace p-block elements in the 

silicate Earth, although such reactions may become exceedingly strong under terrestrial core 

conditions. One reason for the inverse correlations is that the volatility of an element (quantified 

by its condensation temperature) correlates inversely with its binding strength with Fe, i.e. the 

higher the volatility the weaker the binding with Fe (Fig. S1). Another factor is that binding of an 

element with Fe may prevent its evaporation in primordial Earth.  
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Fig. 2. Binding strength with Fe, their correlation with depletion in Earth and their chemical 

origin. a. – c. The correlations between element depletions and their binding strength with Fe under 0, 

150 and 300 GPa. Horizontal axes show the enthalpy of formation per atom of the most stable Fe 

compound of selected element. The vertical axes show the abundance of an element normalized to CI 

chondrite and Mg. d. – f. Calculated Bader charge of iron in Fe – X compounds at 0, 150 and 300 GPa.  

The dramatic change of Fe chemistry under pressure can be understood by a topological 

investigation of the electron density, employing Bader charge analysis [28]. The charge transfer 

between iron and p-block elements shows that, apart from Al and Si compounds (see below), the 

magnitude of charge transfer changes almost linearly with atomic number in each period from 

group 13 to group 17 (Fig. 2d – 2f). At 0 GPa, the charge is negative for most of the p-block 

elements, indicating that iron is oxidized. The charge transfer is generally small for heavy p-block 

elements, which explains the poor stability of their Fe compounds. Under high pressure, the 

electrons redistribute toward Fe, reducing its positive charge. For heavy p-block elements, like Ge, 

P, As, Te and I, the charge on Fe changes from positive to negative at 0, 150, 110, 30, and 100 

GPa, respectively (Fig. 2d – 2f). Similar charge transfer reversal (CTR) also happens in Fe – B 
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and Fe – Se compounds, but at higher pressures of 375 and 405 GPa, respectively. This CTR 

changes the chemical character of iron from being a reductant (electron donor) to an oxidant 

(electron acceptor). CTR is most dramatic for the 5p elements such as Te and I. For I, the charge 

on Fe changes from +0.75e at 0 GPa to -0.39e at 300 GPa, and CTR happens at 100 GPa. In other 

words, iron iodide becomes iodine ferride above 100 GPa. The charge redistribution mainly 

happens between Fe 3d and X np orbitals (Fig. S2), which is the natural result of the energy shifts 

of the 3d and the np bands (Fig. S3). The Fe 3d bands become lower in energy because they have 

a smaller radius and are therefore less prone to change under increasing pressure (Fig. S4).  

 

Fig. 3. Structure evolution of Fe-p block compounds under pressure. a. Layered structure 

of stable FeI2 at 0 GPa; b. FeI3 at 0 GPa; c, Fe2I at 150 GPa; d. Fe3I at 150 GPa; e, FeX2 (X 

= As and Te) structure at ambient pressure; f. FeAs at 150 GPa; g. FeTe at 150 GPa; 

h. FeX (X = Sn and Ge) with intermetallic bonds between Fe atoms; i. CsCl structure, 

a common structure for FeX compounds under pressure. Brown balls represent Fe 

atoms; the size (small and large) indicates the charge transfer out of or into Fe. The 

arrows show the interstitial space for lone pair electrons of p block elements. More 
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structures can be found in Fig. S5. The dynamic stability of the structures can be seen 

in Fig. S6.  

Charge redistribution also shows a strong effect on the structure evolution of Fe compounds. At 

low pressure, many structures contain lone pair electrons on p-block elements that will disappear 

under high pressure, accompanying by the increase of coordination number and charge transfer 

back to Fe (Figs. 3a – 3d for Fe-I; Figs. 3e – 3g for Fe-As and Fe-Te). Some compounds contain 

Fe-Fe bonds in the low-pressure structure that simply vanish as pressure increases (Fig. 3h). It is 

interesting that many FeX compounds adopt the simple CsCl structure under high pressure, due to 

the large charge transfer to Fe. 

 

Fig. 4. Anomaly of Si in binding with Fe. Electron localization functions (ELF) of FeSi a. at 0 GPa and 

b. at 300 GPa; c. the enthalpy of formation of Fe-X compounds as functions of pressure. The isosurfaces 

of the ELFs are taken at 0.2.  

Another distinctive feature emerging from the comprehensive computation of Fe chemistry is an 

anomaly in reacting with Si (and Al). Generally, the charge transfer from iron to p-block elements 

decreases with increasing atomic number in the same group (negative with CTR). For example, 

the Bader charges on Fe in pnictides increase in the order N>P>As>Sb. Similar increases can be 

found across the chalcogens and halogens. This order of increasing charge remains under 

increasing pressure (Fig. 2d – 2f). However, for group 14 elements, the charges of Fe at 0 GPa 

increase in the order C>Ge>Sn>Si, and those for the last three elements are very close to one 
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another. Under high pressure, the charge of Fe in Fe-Si compounds decreases most dramatically 

and becomes significantly lower than Ge and Sn. A similar phenomenon can be seen for group 13 

elements. This distinctive anomaly is due to the fact that the unoccupied d shells are significantly 

higher in energy for Si (and Al) and cannot host electrons, in contrast to heavier p-block elements, 

leaving large charge transfer from Si (and Al) to Fe, especially under high pressure. At 300 GPa, 

the charge on iron in FeSi is as low as -2e, indicating the very strong ionic nature of the compound. 

Indeed, the ELF values between Fe and Si decrease dramatically under pressure (Fig. 4a – 4b). 

Consequently, Fe-Si bonding persistently strengthens at increasing pressure. At 0 GPa, the Fe-Si 

bond strength is similar to Fe-S and Fe-P, all much weaker than Fe-O (Fig. 4c). Under increasing 

pressure, the Fe-Si binding strengthens most significantly and even surpasses Fe-O at 250 GPa, 

implying that Si becomes highly siderophile at the pressure of Earth’s core. The lower density of 

FeSi (Extended Data Fig. 7) under core pressures can also explain the low core density as revealed 

by the seismic wave measurements. Finally, Ca/Al and Mg/Si ratios are expected to exist in 

chondritic relative proportions in the silicate Earth, but both ratios are higher than chondritic in the 

shallower, accessible Earth, suggesting either volatility controlled fractionation of Mg/Si or the 

presence of an Al or Si-rich domain in Earth’s deep interior [29–31]. Si and Al enrichment in the 

Earth’s core may explain the higher-than-chondritic ratios in the shallower, accessible Earth. 

 

4. Conclusions  

We would like to emphasize that this work does not aim to develop a comprehensive 

thermodynamic model of Earth’s core—for which many other important factors need to be 

included—but is instead focused on identifying new chemistries for Fe at terrestrial core conditions. 

For example, Earth’s core may contain a considerable budget of light elements such as S, O and 

H that might modify trace element affinities for the core [19]. However, since the Earth’s core 

consists of predominantly Fe (and Ni) that will largely lower the activity of the light elements, the 

inclusion of these light elements is unlikely to overturn the chemistry of p-block elements in the 

core that has been examined here. Furthermore, our calculations are performed for crystalline 

compounds, and are therefore more directly related to Earth’s solid inner core. On the other hand, 

the general trend that the chemical binding with Fe becomes much stronger under pressure can be 

equally applied to the liquid outer core, because the chemical driving force is irrelevant to the state 

of the matter.  
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 SUPPLEMENTARY INFORMATION 

 

 
 

Fig. S1. Reproduction of a plot of the abundance of elements in the Silicate Earth (normalized to 

Mg and CI chondrites) versus their 50% condensation temperature at 10-4 atm. The size of the 

filled circles represents the binding strength of the element with Fe quantized by the enthalpy of 

formation per atom (larger symbols represent higher/lower binding strength). Three panels show 

three different pressures, 0, 150 and 300 GPa.   
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Fig. S2. Occupation number and band center as function of pressure in Fe-I compounds. At each 

pressure, the compound that have the lowest enthalpy of formation per atom is chosen. The 

occupation numbers are calculated by projecting and integrating the wavefunctions to the atomic 

orbitals inside the Wigner-Seitz Radius. The band centers are calculated from the density of 

states (Extended Data Figure 5) using the DOS analysis tool “dosanalyze.pl” in the VTST tool 

package from UT Austin.  
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Fig. S3. The projected DOS spectra of a, FeI2 with P-3m1 structure at 0 GPa; b, FeI3 with R-3 

structure at 0 GPa; c, FeI3 with R32 structure at 50 GPa; d, FeI with P-1 structure at 100 GPa; e, 

Fe3I with Pm-3m structure at 200 GPa; f, Fe2I with P63/mmc structure at 400 GPa. 
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Fig. S4.  The free-atom wavefunctions of the Iron 3d and Iodine 5p orbitals. The wavefunctions 

are calculated by use of the Fritz-Harber-Institute (FHI) pseudopotential generation package. The 

two vertical lines show the radii that are half of the Fe-I distances at 0 GPa and 150 GPa in the 

Fe-I compounds that have the lowest enthalpy of formation per atom at that pressure. It clearly 

shows that the compression of the compounds interferes much more significantly with Iodine 5p 

orbitals than with Fe 3d orbitals. Therefore, the energy levels of Iodine 5p will increase much 

faster with pressure than that of Iron 3d, which is the driving force of the charge transfer reversal 

in Fe-I compounds under pressure.  
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Fig. S5. More crystal structures of Fe compounds with p elements, at 0 GPa, 150 GPa and 300 

GPa. a) 1, FeIn3 with P4 space group under 0 GPa; 2, FeGa3 with P42/mnm space group under 0 

GPa; 3, FeAl6 with Cmcm space group under 0 GPa; 4, FeB with Pnma space group under 0 

GPa; 5, FeB with Cmcm space group under 150 GPa or 300 GPa; 6, FeIn, FeGa and FeAl with 

Pm-3m space group under 150 or 300 GPa. b) 1, FeSn and FeGe with P6/mmm space group 

under 0 GPa; 2, FeSi with P213 space group under 0 GPa; 3, Fe3C with Pnma space group under 

0 GPa, 150 GPa or 300 GPa; 4, FeSn, FeGe and FeSi with Pm-3m space group under 150 GPa or 

300 GPa. c) 1, FeSb2 and  

FeAs2 with Pnnm space group under 0 GPa; 2, FeP with Pnma space group under 0 GPa; 3, FeN 

with  F-43m space group under 0 GPa; 4, FeSb2 with  I4/mcm space group under 150 GPa; 5, 

FeAs with C2/m space group under 150 GPa; 6, FeP with C2/m space group under 150 GPa; 7, 

FeN with P63/mmc space group under 150 GPa; 8, FeSb with Pm-3m space group under 300 

GPa; 9, FeAs with P213 space group under 300 GPa; 10, FeP with P21/c space group under 300 

GPa; 11, FeN with P213 space group under 300 GPa. d) 1, FeTe2 and FeSe2 with Pnnm space 

group under 0 GPa; 2, FeS with P4/nmm space group under 0 GPa; 3, Fe2O3 with R-3c space 

group under 0 GPa; 4, FeTe with Pnma space group under 150 GPa; 5, FeSe with Pbcm space 

group under 150 GPa; 6, FeS with Pmmn space group under 150 GPa; 7, FeO2 with Pa-3 space 

group under 150 GPa or 300 GPa; 8, FeTe with Cccm space group under 300 GPa; 9, FeSe with 

Pm-3m space group under 300 GPa; 10, FeS with Fmmm space group under 300 GPa. e) 1, FeI2 

and FeBr2 with P-3m1 space group under 0 GPa; 2, FeCl2 with R-3m space group under 0 GPa; 

3, FeF3 with R-3c space group under 0 GPa; 4, Fe3I with Pm-3m space group under 150 GPa; 5, 

FeBr with P-1 space group under 150 GPa; 6, FeCl2 with Pa-3 space group under 150GPa; 7, 

FeF3 with Cmcm space group under 150 GPa; 8, Fe2I with P63/mmc space group under 300 GPa; 

9, FeBr and FeCl with Pm-3m space group under 300 GPa; 10, FeF with R-3m space group under 

300 GPa. 
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Fig. S6. The phonon spectra of FeI compounds shown as example Fe-X compounds for 

their dynamic stability. (The phonon dispersion (left) and density of states (right)). (a)FeI2 

with P-3m1 structure at 0 GPa, (b) FeI3 with R-3 structure at 0 GPa, (c) FeI3 with R32 

structure at 50 GPa, (d) FeI with P-1 structure at 100 GPa, (e) Fe3I with Pm-3m structure 

at 200 GPa, and (f) Fe2I with P63/mmc structure at 400 GPa. The phonon spectra are 

calculated using finite displacement method by combining the features of phonopy 

(http://phonopy.sourceforge.net) and VASP programs. 

  

http://phonopy.sourceforge.net/


 19 

  
 

Fig. S7. The density difference between FemXn (X= p elements) compounds and pure Fe at 0 

GPa, 150 GPa and 300 GPa.  
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Discussion 1. P block elements and their significance in Earth science 

 

This selection of elements includes three major element S (721 K; 50% condensation temperature 

of 664 K), Si (2628 K; 1310 K) and P (556 K; 1229 K) and a suite of geochemical tracers Ge (3103 

K; 883 K), As (886 K; 1065 K), Se (958 K; 697 K), Sn (2543 K; 704 K), Sb (2023 K; 979 K), and 

Te (1263 K; 709 K) which are critical for understanding planetary accretion and core formation. 

(The temperatures in parentheses give the 1-bar boiling point and the 50% equilibrium 

condensation temperature at 10-4 bar total pressure for solar system abundances of each element, 

respectively, as a guide to their volatility and reactivity in the condensing solar nebula.) 

Condensation temperatures are useful to consider when assessing if a particular element is 

deficient in the silicate mantle relative to chondrites because it suffered volatilization during 

planetary formation; it is a major task to explore whether such elemental deficiencies relate to 

elements being “hidden” in the metallic core.  

 

Discussion 2. Stability of Fe-X (X=p block elements) compounds under pressure 

At ambient conditions, although some 2p elements (e.g. C, N, O) can form stable compounds with 

iron with a  of approximately -0.5 eV/atom, a subset of 3p (e.g. Si, P, S; Fe – Al compounds 

are excepted, and will be discussed separately) and 4p (e.g. Ge, As, Se) elements bind only loosely 

with iron. This general trend of reactivity is markedly changed upon increasing pressure: most of 

these elements can form stable compounds with iron with a   of at least -1eV/atom. For 

example, Fe and Te are not likely to form a stable compound (with  = -0.2 eV/atom) at 0 GPa. 

However,  decreases by 1 eV/atom under high pressure, making the compound FeTe as stable 

as FeS at 300 GPa, a pressure similar to that in Earth’s inner core of 367 GPa). 

 

Discussion 3. The structure evolution of Fe compounds under pressure 

Both of the two stable Fe-I compounds adopt layered structures at ambient pressure, including FeI2 

in MoS2 (P3̅m1) and FeI3 in FeBr3 (R3̅) structure with lone pairs on iodine anions pointing toward 

the space between layers (Figs. 3a and 3b). However, at 150 and 300 GPa, iron-rich compounds 

adopt densely-packed structures, including Fe2I adopting Ni2In structure (P63/mmc) (Fig. 3c) and 

Fe2I adopting Cu3Au structure (Fm3̅m) (Fig 3d). Correspondingly, the coordination number of 

iodine increases substantially, to 6 in Fe2I and 12 in Fe3I, and the lone pairs disappear, in good 
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accordance with the CTR under pressure. Similar structure evolution is also found in other 

compounds containing lone pair electrons at ambient pressure, including Fe-As and Fe-Te 

compounds. (See Fig. 3e for ambient phase of both FeAs2 and FeTe2, Figs. 3f and 3g and for high 

pressure phases of FeAs and FeTe, respectively.) In contrast, no lone pair is found in the low-

pressure structures of FeX where X is a group 13 or 14 element. FeSn and FeGe are stable in a 

highly symmetric P6/mmm structure that contains Fe – Fe inter-metallic bonds (Fig 3h). While 

increasing pressure induces the large charge transfer to iron, Fe – Fe bonds disappear and the 

compounds become more ionic. At pressures above 150 GPa, FeSn, FeGe and FeSi transform into 

the CsCl structure (Pm3̅m) (Fig 3i) which is a common structure for AB type ionic compounds 

when the radius of A+ and B- ions are similar, as stated by Pauling’s first rule. In fact, many FeX 

compounds adopt this simple CsCl structure under high pressure, due to the increasing ionic bond 

character. 

 

 
 

 


