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Abstract

Molecular dynamics simulations for liquid CaAl2Si2O8 have been carried out at 72 state points spanning ranges in density
(q: 2398–4327 kg/m3), temperature (T: 3490–6100 K) and pressure (P: 0.84–120 GPa) relevant to geosystems. The atomic scale
structure of the melt is determined by analysis of nearest neighbor coordination statistics as a function of T and P. Dramatic
structural change occurs as pressure increases especially for 0 < P <20 GPa at all temperatures. Changes in structure are
encapsulated by examining the coordination of Si, Al, Ca and O around oxygen and vice versa. Si and Al change from pre-
dominantly fourfold at low-P to dominantly sixfold for P >� 20 GPa. Pentahedrally coordinated Si and Al in distorted tri-
gonal bipyramids attain abundance maxima corresponding to �60% of total (Si, Al)On at 3–5 GPa and weakly depend on T.
The coordination of Ca by oxygen increases from 7 to 10 for 0 < P < 20 GPa and changes slowly for P > 20 GPa at 3500 K.
Similar behavior is seen at 6000 K except that the interval of rapid changes occurs at higher pressure. Oxygen with only one
nearest Si or Al neighbor (i.e., non-bridging oxygen, NBO) decreases whereas oxygen with two or three nearest neighbors of
Si, Al or Ca increases as pressure increases. Changes in melt structure are reflected in the variation of thermodynamic and
transport properties of the liquid. Values of the self-diffusivities of Ca, Al, Si and O are fit to a modified Arrhenian expression
and compare well to limited laboratory data. Self-diffusivities are best fit using ‘low P’ and ‘high-P’ expressions, identical in
form but with different parameters, with activation energies and activation volumes in the range 150–200 kJ/mol and +5 to
�1 cm3/mol, respectively. Green–Kubo calculations for liquid shear viscosity are presented and compare well with limited
laboratory results. Application of the Eyring model to determine the characteristic size and number of atoms in the activated
cluster based on independently computed D and g suggests that the activated cluster decreases from �8 to �3 atoms from low
to high pressure while its characteristic size shrinks from �14 Å to �3 Å providing insight into dynamics of atom mobility and
possible cooperative behavior. The equation of state and variation of internal energy with T and V are used in Part II (Ghiorso
et al., 2009) to derive a comprehensive thermodynamic description of liquid CaAl2Si2O8. This is best accomplished by allowing
for EOS expressions broken into high and low pressure intervals consistent with coordination statistics and MD-derived
transport properties.
� 2009 Elsevier Ltd. All rights reserved.
1. INTRODUCTION

This paper is part of a series in which the structure, ther-
modynamic and transport properties of molten multicom-
ponent silicates relevant to geochemical and geodynamical
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problems are investigated at elevated temperatures (2500–
5000 K) and pressures (0–135 GPa) by combining Molecu-
lar Dynamics (MD) simulations with macroscopic equation
of state (EOS) and transport property analysis. So far rela-
tively unpolymerized melts such as Mg2SiO4 and MgSiO3

have been studied in some detail in order to construct of
equations of state and transport property relations (e.g.,
Stixrude and Karki, 2005; Wan et al., 2007; de Koker
et al., 2008; Martin et al., 2009; Nevins et al., 2009).
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Although several natural or archetypical silicate liquids
have been investigated by laboratory (e.g., shock wave,
see Akins et al., 2004) or computational methods (e.g.,
Guillot and Sator, 2007a,b; Lacks et al., 2007), a multicom-
ponent silicate liquid thermodynamic and transport prop-
erty model valid throughout the Earth’s mantle remains
elusive. Although the conceptual basis for a fully multicom-
ponent thermodynamic treatment is on hand (e.g., see
Ghiorso 2004a,b; Ghiorso and Kress, 2004) the lack of
EOS information at elevated temperature and pressure for
multicomponent liquids has hampered development of
models useful for geochemical and geophysical applica-
tions. Construction of an EOS requires approximately 75–
100 state points more or less evenly distributed over the
appropriate P–T region; a few P–T points on a few compo-
sitions are woefully insufficient. In this study (Part I) and its
companion (Part II, Ghiorso et al., 2009) molten CaAl2-

Si2O8 is studied in detail. In Part I (this study) details on
the MD simulations, retrieved thermodynamic and trans-
port properties and melt structures are provided and com-
pared with available laboratory information. These results
are used in Part II (Ghiorso et al., 2009) to construct a ther-
modynamic equation of state for liquid CaAl2Si2O8 and to
compare the EOS predictions with shock wave (Asimow
and Ahrens, 2008) and other laboratory thermodynamic
data.

Knowledge of the properties of naturally occurring sili-
cate liquids is key for understanding the current and previ-
ous dynamical states of the Earth. For example,
quantitative information regarding liquid shear viscosity,
the self-diffusivity of oxygen, silicon, aluminum, the alkalis,
alkaline earths and transition metals and the thermal and io-
nic conductivity of molten silicates is indispensable for anal-
ysis of magma transport phenomena. The thermodynamic
properties and structure of molten silicates are also relevant
to magma genesis and crystal-liquid equilibria including the
thermal properties and trace element systematics of erupted
liquids. A number of arguments suggest that the Earth and
other terrestrial planets underwent substantial or complete
melting during formation by collisional accretion (e.g.,
Ohtani et al., 1985; Abe, 1997; Debaille et al., 2008). In
the case of Earth, subsequent giant Moon-forming impact
also deposited large amounts of heat (Canup and Agnor,
2000; Solomatov, 2000; Canup, 2004). The state of the man-
tle following magma ocean solidification set the initial con-
ditions for growth and evolution of the lithosphere,
hydrosphere and the atmosphere and mediated the start of
plate tectonics on Earth (Anderson, 2007). On the Moon,
the formation of a plagioclase-rich crust by floatation upon
the lunar magma ocean was of paramount importance.
Many terrestrial (silicate plus metal) exoplanets circling
nearby (<1000 lightyear distant) stars await discovery
(Valencia et al., 2007) and so the necessity of understanding
the properties of molten silicates at extreme conditions on
‘super earths’ will undoubtedly arise in the future. Argu-
ments have been made for the presence of localized regions
of melt along the core–mantle boundary of the Earth today
(Garnero et al., 1993; Revenaugh and Sipkin, 1994; Wil-
liams and Garnero, 1996; Revenaugh and Meyer, 1997).
These few illustrative examples underscore the importance
of understanding the properties of multicomponent silicate
liquids for application to myriad geochemical and geody-
namical problems on Earth and other planets.

In addition to geochemical and geodynamical applica-
tions, an understanding of the amorphous state (liquids
and glasses), specifically the relationship between liquid
structure, the EOS and transport properties, is of interest
in its own right. Liquid–liquid phase separation, in which
two liquids of distinct composition coexist at a single state
point, are quite common in natural systems and have long
been studied (e.g., Roedder, 1951; Philpotts, 1976). There is
now growing interest in a more unusual behavior. This phe-
nomenon, whereby a one-component system can exist as
two liquid or amorphous phases having an identical chem-
ical composition but distinct density and structure, is
termed polyamorphism (Grimsditch, 1984). Phase transi-
tions between such distinctly structured liquids occur with-
out change in composition but instead with a change in
density (Tanaka, 2000). Experimental evidence for polya-
morphism has been found in molten silica, H2O, and binary
melts in the system Al2O3–Y2O3 among other compositions
(e.g., Aasland and McMillan, 1994; Debenedetti 1996; Sen-
ker and Rossler, 2001; Brazhkin and Lyapin, 2003; Skibin-
sky et al., 2004). Polyamorphism for a given composition
can be predicted from thermodynamic analysis provided a
robust EOS is available. Due to advances in both hardware
and software within the last decade a sufficient number
(�70) of state points for a single composition can now be
routinely investigated by MD simulation thereby enabling
accurate construction of an EOS consistent with a given
effective pair potential.

The liquid state arises from a delicate balance between
the ‘packing’ of atoms (related to the configurational entro-
py) and the ‘cohesive’ forces between atoms (related to the
internal energy). The details of this balance determine li-
quid structure, its dependence on temperature and density
(pressure) and material properties-both thermodynamic
and transport (Barrat and Hansen, 2003). Two specific as-
pects are particularly noteworthy. The first is the work of
Rosenfeld and Tarazona (1998) who have developed free
energy functionals for systems characterized by continuous
(‘soft’) potentials such as those used to study silicate geoliq-
uids. Their model posits that the fluid Madelung (potential)
energy scales with T according to T3/5. Rosenfeld–Tarzona
(RT) scaling can be tested using MD results and has been
found quite robust and hence extremely useful in EOS con-
struction from MD simulations (Ghiorso et al., 2008) be-
cause it provides a rationale for interpolation and
extrapolation. A second point, now widely appreciated, is
that pressure has a dramatic effect on melt structure (e.g.,
Nevins and Spera, 1998; Bryce et al., 1999; Lacks et al.,
2007; Guillot and Sator, 2007b). An advantage of the
MD method is that complete coordination number statis-
tics are available at each state point, essential information
for constraining mixing models. The combination of coor-
dination statistics with RT scaling provides a framework
for a multicomponent model of the thermodynamics of
molten silicates. For multicomponent systems, entropic
effects associated with the mixing of various coordination
polyhedra are crucial to the development of accurate
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macroscopic models (e.g., Ghiorso, 2004a). Although accu-
rate laboratory measurements are the gold standard for
EOS development, the wide range of coverage in composi-
tion, temperature and pressure needed for application to
planet interiors means that computational methods will
play an important role in the future.

In this study (Part I), we report the details of MD simu-
lations for molten CaAl2Si2O8. Simulations have been car-
ried out at 72 state points for density (q), T and P ranges
of 2398–4327 kg/m3, 3490–6100 K and 0.84–120 GPa,
respectively. The raw data are presented in tabular form
and the self-diffusivity (Di) of Ca, Al, Si and O and shear vis-
cosity (g) variation with P and T are presented. In Part II, a
detailed macroscopic EOS analysis is derived based on the
MD results and additional theoretical insights. We begin
by presenting the general form of the simple pair-wise-addi-
tive potential used in these studies. This is followed by a
description of the molecular dynamics (MD) method and
details of the calculations applied to molten CaAl2Si2O8.
Thermodynamic properties including the thermal pressure,
isobaric expansivity (a), isothermal compressibility (b), iso-
choric heat capacity (CV) and Grüneisen’s parameter (c) are
presented at each state point in tabular form (electronic an-
nex EA-1 and EA-2). We show how RT scaling can be used
to obtain comprehensive expressions for the internal energy
as a function of volume and temperature, E(V, T) which are
used in Part II to build the EOS. A nearest neighbor analysis
as a function of pressure (or volume) along selected iso-
therms is given. Comprehensive tables for coordination
statistics are given in electronic annex EA-3. Values of the
self-diffusivities of Ca, Al, Si and O are presented spanning
the range of P and T of the MD simulations and the close
connection between self-diffusion and melt structure at the
scale of 0.2–0.5 nm is elucidated. Green–Kubo calculations
for the shear viscosity of molten CaAl2Si2O8 at elevated
temperature and pressure are presented enabling a test of
the phenomenological Stokes–Einstein and Eyring models
for predicting viscosity from self-diffusion data and provid-
ing insight into the size of the activated complex involved in
diffusion and viscous flow.
2. PREVIOUS WORK AND PROSPECTUS

Previous studies of liquid CaAl2Si2O8 by MD simula-
tions have been carried out by Scamehorn and Angell
(1991), Nevins and Spera (1998) and Morgan and Spera
(2001a,b). A highlight from the Nevins and Spera (1998)
study was an explanation of laboratory data for the solubil-
ity of noble gas Ar as a function of pressure (e.g., see
Chamorro-Perez et al., 1998) in molten CaAl2Si2O8. Anal-
ysis of the coordination statistics from the MD simulations
showed that the decreasing abundance of (Si,Al = T)O4

and TO5 polyhedra and concomitant increase in edge-shar-
ing TO6 octahedra with increasing pressure destroys the
high compressibility open ring structure of the melt. Recall
that in crystals of anorthite at low pressure, TO4 tetrahedra
corner share to form 8-membered rings that define a large
inter-ring site. The destruction of the TO4 and TO5 cor-
ner-sharing network drastically decreases the number of
available ring sites where Argon and other noble gases
can be accommodated in accord with laboratory solubility
data. Recent additional experimental solubility studies
(Bouhifd et al., 2008) confirm this view. Morgan and Spera
(2001a,b) focused primarily on the thermodynamics and
dynamics of the computer glass transition and did not spe-
cifically explore the effects of pressure. Ghiorso (2004b)
used the results from Nevins and Spera (1998) and Morgan
and Spera (2001a,b) to develop a provisional equation of
state of liquid CaAl2Si2O8 spanning the density range
2400–3800 kg/m3 at 4000 K. This work is vastly expanded
upon in this study.

Due to dramatic improvements in algorithms and com-
puting resources, it is now possible to obtain extensive cov-
erage in P–T–V coordinates for multicomponent silicate
liquids that span the range of temperature and pressure rel-
evant to the Earth’s mantle. Simulations with 104 (or more)
particles for periods up to 5 nanoseconds (ns) can be rou-
tinely performed. This is important for the accurate con-
struction of the EOS and determination of transport
properties. MD simulations of the type performed here gen-
erate microcanonical (NEV) ensemble-averaged properties
at PT state points defined by mean simulation values with
associated fluctuations that arise due to the finite number
of particles (N) in the simulated system. The fluctuations
in temperature (rT) and pressure (rp) scale as N�1/2 where
N is the number of atoms in the simulation (McQuarrie,
1976). Hence there is an inherent uncertainty in any ensem-
ble-averaged property (e.g., diffusivity, isochoric heat
capacity, internal energy, shear viscosity, etc.) associated
with intrinsic fluctuations in state point values (i.e., temper-
ature and pressure in the NEV ensemble). The N�1/2 scaling
implies that the uncertainty in temperature or pressure is
four times smaller in a MD simulation of, say, N = 8000
atoms compared to one of N = 500 atoms, for example.
Large particle number simulations are required to accu-
rately compute material properties for a given potential
(e.g., see Rustad et al., 1990; Kawamura, 1991) in order
to reduce uncertainties in temperature and pressure associ-
ated with a given property. For transport properties (e.g.,
shear viscosity, phonon thermal conductivity, ionic conduc-
tivity) defined by integral time-correlation functions from
Green–Kubo theory (Kubo, 1966), long simulations, typi-
cally 2–10 nanoseconds (ns), are necessary to reduce uncer-
tainties (Nevins and Spera, 2007). Long simulation times on
large systems have only become practical recently. We ex-
ploit this capability in this and related works.
3. METHODS

3.1. Ab initio versus effective pair potential models

In principle, knowledge about a material is obtained
from the quantum mechanical wave function. This is ob-
tained by solving the Schrödinger equation for the many
electron system. In practice solving such an N-body prob-
lem is not possible. Density Functional Theory (DFT)
developed by Kohn and Sham (1965) based on the theory
of Hohenberg and Kohn (1964) can be used to approximate
the energy. The fundamental parameter in DFT is the elec-
tron charge density rather than electron wave functions.



Fig. 1. Pair potential energies for Si–O, Al–O, Ca–O and O–O
interactions computed from Eq. (1) in text. Numerical values of Aij

and Bij are identical to those reported in Nevins and Spera, 1998.
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The N-electron problem is expressed as N one-electron
equations where each electron interacts with all other elec-
trons via an effective exchange–correlation potential. These
interactions are calculated using the local density approxi-
mation to exchange and correlation. Plane wave basis sets
and total energy pseudopotential techniques are used to
solve the Kohn–Sham one electron expressions. The Hell-
mann–Feynman theorem is then used to compute the forces
required to integrate the equations of motion as required in
molecular dynamics simulations (Car and Parrinello, 1985).
This method of ‘First-Principles’ or ab initio Molecular
Dynamics (FPMD) has been applied to small systems, typ-
ically of N � 100 particles for molten SiO2, SiO2–H2O,
Mg2SiO4, MgSiO3 and MgSiO3–H2O (Horbach and Kob,
2002; Pohlmann et al., 2004; Stixrude and Karki, 2005;
Wan et al., 2007; de Koker et al., 2008; Mookherjee
et al., 2008). With further approximations, larger systems
up to �1000 atoms can be studied (Ordejon et al., 1996; So-
ler et al., 2002) although these methods has not yet been ap-
plied to geochemical systems. Insights into the current
limitations of DFT and the role of intermolecular potentials
are discussed by Stone (2008) and Cohen et al. (2008).

A simpler approach based on effective pair potentials is
adopted in this series of studies in part to enable study of rel-
atively large systems (N � 104) for the long durations (�2 ns)
necessary for determination of transport properties (Nevins
and Spera, 2007) and robust equations of state. Large N-long
duration simulations are not yet routinely feasible using
ab initio methods. Although Effective Pair-potential Molecu-
lar Dynamics (EPPMD) is less ‘exact’ than FPMD, when
comparisons are made between FPMD and EPPMD results
are often quite reasonable, although difference do remain,
provided effective pair potentials (Filippini and Gavezzotti,
1993) are carefully developed (e.g., Cao et al., 1994; Oganov
et al., 2001; Saika-Voivod et al., 2001, 2004; Stixrude and
Karki, 2005; Lacks et al., 2007; Wan et al., 2007; Martin
et al., 2009; Nevins et al., 2009). An additional example is
the favorable comparison between EPPMD and FPMD re-
sults (Karki et al., 2006; Lacks et al., 2007, respectively) for
the molar volume of MgO liquid at 3000 K and zero pressure:
16.3 cm3/mol versus 16.5 cm3/mol, respectively. Collec-
tively, these comparisons suggest that well-constructed effec-
tive pair potentials can provide a reliable means for studying
the structure, thermodynamics and transport properties of
silicate liquids. A hybrid approach in which parameterization
using the forces, stresses and energies extracted from ab initio

calculations uses DFT to generate a classical interatomic
force field shows promise (Tangney and Scandolo, 2002).
The hybrid approach fills in a void between purely FPMD
and EPPMD methods. In this study we show that Ca, Al,
Si and O self-diffusivities, melt shear viscosity and melt struc-
tures based on laboratory experiments agree reasonably with
those computed from EPPMD simulations using relatively
crude interatomic potentials.

3.2. Effective Pair Potentials

Effective pair-wise-additive ionic potentials that allow
for partial charges, Coulombic long-range forces, Born
electron repulsion, dipole–dipole Keesom forces, dipole-in-
duced dipole Debye forces and London dispersion forces
(grouped collectively as van der Waals forces) are employed
here. Effective pair potentials are modifications of the ac-
tual (but unknown) pair interaction potential energy V(rij)
that include the effects of all other atoms on the pair ij inter-
action, approximately (see Gray and Gubbins, 1984; March
and Tosi, 1984 for discussion of potential energy functions).
The general expression for the pair potential energy be-
tween two atoms i and j is:

V ðrijÞ ¼
qiqje

2

4peorij
þ Aij exp � rij

Bij

� �
� Cij

r6
ij

ð1Þ

where qi, qj are the effective charges on species i and j, rij is
the distance between the pair ij, e is the charge of the elec-
tron (1.60218 � 10�19 C), e0, is the vacuum permittivity
(8.8542 � 10�12 C2 m�1 J�1), Aij and Cij are energy param-
eters for the pair ij describing repulsive and van der Waals
attractive forces, respectively and Bij is a e-folding length
characterizing the radially symmetric decay of electron
repulsion energy between atom pair ij. The parameters used
in this study to model molten CaAl2Si2O8 are identical to
those used by Nevins and Spera (1998); the potential inter-
actions of Si–O, Al–O, Ca–O and O–O are pictured in
Fig. 1. This potential utilizes formal ionic charges of +2
for Ca, +4 for Si, +3 for Al and �2 for O and sets all
van der Waals interaction to zero. In a later contribution,
we compare results of this potential to those using the
transferable potential developed by Matsui (1998) for com-
positions in the system Na2O–CaO–MgO–Al2O3–SiO2. The
Matsui NCMAS potential uses fractional charges and in-
cludes non-zero van der Waals terms.

3.3. Molecular dynamic simulations

In this section, a brief description of the methods used is
presented. The books Hanson and McDonald, 1986, Allen
and Tildesley (1987), Haile (1992), Dove (1993), Hinchliffe
(2000), Frenkel and Smit (2002) and Rapaport (1995) de-
scribe the methods, limitations and successes of MD
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modeling. In the geochemical literature, the reviews of Wolf
and McMillan (1995), Poole et al. (1995) and Garofalini
(2001) are especially useful. Earlier Molecular Dynamics re-
sults for geochemical systems by the UCSB group may be
found in Rustad et al. (1990, 1991a,b,c), Stein and Spera
(1995, 1996), Bryce et al. (1997, 1998), Nevins and Spera
(1998) and Morgan and Spera (2001a,b). These studies were
done on systems of N � 1000 atoms whereas in the current
series of studies, N � 104. Recently the compositions
Mg2SiO4 and MgSiO3 have been studied by MD simulation
(Martin et al., 2009; Nevins et al., 2009) using procedures
identical to those used here. The studies of Guillot and Sa-
tor (2007a,b) and Lacks et al. (2007) provide additional
EPPMD results for geochemical systems.
3.3.1. MD simulation methodology

The Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS, see http://lammps.sandia.gov/) code
described in Plimpton (1995) has been modified for use in
geochemical systems to run efficiently on machines pres-
ently available. Details of the code and its implementation
in a parallel environment on multiprocessor machines are
provided in Nevins (2009). The code has been optimized
to generate output needed for investigating geomaterials
and for post-production analysis including coordination
statistics and the efficient retrieval of thermodynamic and
transport properties. The total simulation time for the work
reported here is �70 ns.

The essence of the MD computation is to find the vector
sum of all forces acting on each particle due to every other
particle within the MD primary cell utilizing Eq. (1). In de-
tail, the force calculation is broken into long-range and
short-range contributions. Two cut-off distances, one for
Coulombic forces and another for Born and van der Waals
forces are chosen and used to compute short-range forces
directly. The computational work for the short-range calcu-
lation scales as N2. Long-range Coulombic forces of the
Ewald sum are computed by the Particle–Particle Parti-
cle–Mesh (PPPM) method (Darden et al., 1993). This algo-
rithm scales as N log N and represents a significant
computational savings compared to the classical Ewald
sum, which scales as N1.5 to N2 depending on its precise
implementation. Because the PPPM scales as N log N, large
particle simulations can be routinely accomplished thereby
lowering the magnitude of statistical errors involved in the
determination of physical properties from atom trajectories
and time-correlation functions. The simulations are run
keeping the number of particles (N), sample volume (V)
and total energy (internal energy, E) of the system constant.
This ensemble is called the microcanonical or NEV ensem-
ble and corresponds to an isolated thermodynamic system.
The internal energy represents the sum of the potential and
kinetic energies, E = EP + EK. Once forces for each particle
have been resolved, Newton’s equations of motion are
solved using a time step of 1 femtosecond (1 fs) using the
Verlet (1967) scheme to advance the positions of all atoms.
Serial application of the Verlet scheme generates atom tra-
jectories (position and velocity) of all particles for a finite
period of time; typically about 50–100 picoseconds (ps)
for tracer diffusion and EOS studies and up to 5 nanosec-
onds (ns) for shear viscosity determinations. As typical in
MD studies, periodic boundary conditions are used with
the minimum image convention. In all the numerical exper-
iments reported on in this paper, the total number of atoms
used to simulate CaAl2Si2O8 is N = 6500; in particular,
NCa = 500, NAl = NSi = 1000 and NO = 4000. In order to
test the effect of cut-off distance, two NEV simulations were
carried out under identical conditions except that the cut-off
was increased from 0.6 nm to 1.2 nm. The results for
melt of density 3367.49 kg/m3 were: T = 3583 ± 31 K,
P = 21.24 ± 0.38 GPa, E = �41769.93 kJ/mol and T =
3570 ± 31 K, P = 21.63 ± 0.37 GPa and E = �41771.
39 kJ/mol, respectively. The short-range cut-off used in all
production simulations was 0.6 nm, a good trade-off be-
tween accuracy and computational cost. The internal en-
ergy uncertainty associated with the cut-off is 1.3 kJ/mol,
well within calorimetric uncertainty (Ghiorso, 2004a). Be-
cause we are interested in equilibrium liquid CaAl2Si2O8

and not glassy CaAl2Si2O8 (see Morgan and Spera,
2001a,b for MD studies on glassy CaAl2Si2O8 using the
same potential) simulation temperatures must remain
>�3000 K at low pressure in order to insure ergodicity.
At higher pressure, the computer glass transition tempera-
ture (Tg) is higher; performing simulations at T < Tg is
not appropriate for liquid thermodynamics.
3.3.2. Simulation protocol

The calculation at a given state point is carried out as
follows. An appropriate number of atoms of each type
are placed in the primary MD cell using the scheme of Ref-
son (2000). The volume of the primary cell is fixed to give
the desired melt density consistent with the number of
atoms used in the simulation. The simulation is broken into
a pre-production and production phase. Pre-production be-
gins by setting a temperature of 10,000 K and allowing the
system to equilibrate for 10 ps to obtain a Maxwellian dis-
tribution of velocities and constant total energy. Net
momentum is then removed from the system. Temperature
reduction is accomplished in 500 K steps by means of veloc-
ity rescaling. At each temperature, the system is allowed to
relax for 5 ps to allow for thermal equilibration. When the
desired run temperature is reached velocity rescaling is
turned off and the system is equilibrated for an additional
10 ps and the temperature time series is statistically exam-
ined to insure thermal equilibrium. The criterion is that
the average temperature and average pressure of the first
3 ps of the 10 ps record be statically identical to the average
temperature and average pressure of the last 3 ps of the
10 ps interval. When thermal equilibration is achieved, a
production simulation of 50 ps is made at the specified den-
sity and target temperature. Each production run is then
checked for equilibrium by comparing the average temper-
ature of the initial and the final 10 ps of the 50 ps produc-
tion run. Results are not accepted unless the difference in
these average temperatures (and pressures) is less than the
one-sigma fluctuation rT and rp of the 50 ps production
simulation. In the rare cases when this criterion is not
met, the production run length is doubled to 100 ps and
the last 50 ps are checked for thermal equilibration using
the same criterion. All of the results presented in this series

http://lammps.sandia.gov/
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of works are for equilibrium or metastable liquids unless
otherwise noted.

4. RESULTS

4.1. Thermodynamic properties

Seventy-two MD simulations of (equilibrium or meta-
stable) CaAl2Si2O8 liquid have been carried out along
twelve isochors spanning the melt density range 2398–
4327 kg/m3. Pressure and temperature span the range,
0.84–120 GPa and 3491–6102 K, respectively. Thermody-
namic properties at each of the state points of the MD sim-
ulations are available in electronic annex; primary
simulation results are presented in EA-1 and derived quan-
tities are given EA-2.

4.1.1. Thermal pressure coefficient

The location of seventy-two state points along the twelve
isochors is depicted in Fig. 2. Values of the thermal pressure
coefficient (TPC),

@P
@T

� �
V

¼ a
b

ð2Þ

where a is the isobaric expansivity, aðP ; T Þ � q�1ð@q
@T ÞP and

b is the isothermal compressibility, bðP ; T Þ � �q�1ð@q
@P ÞT

as a function of melt density are collected in EA-2. These
values are taken directly from the raw MD simulations.
The continuous curves in Fig. 2 represent the TPC along
isochors derived from the EOS developed in Part II
(Ghiorso et al., 2009). The derived EOS evidently provides
an excellent representation of the thermal pressure coeffi-
cient. The TPC increases by an order of magnitude as den-
sity increases from 2398 kg/m3 to 4327 kg/m3 but is a weak
function of temperature along an isochore. Across the pres-
sure interval of the Earth’s mantle, pressure produces a far
larger effect on the TPC than temperature.
Fig. 2. Pressure–temperature plot showing location of all state points (cl
The slope of the isochore gives the thermal pressure. The continuous cur
2009). In all cases the derived EOS fit is an excellent representation of th
4.1.2. Isothermal compressibility and isobaric expansivity

MD simulations were carried out at six target tempera-
tures from 3500 K to 6000 K along each isochore. Because
the standard deviation of the average run temperature
(�27 K) for each target isotherm is smaller than the average
temperature fluctuation of all MD simulations (�38 K; see
EA-1 electronic annex for values of rT), the isothermal
compressibility can be computed from its definition directly
using the MD results. Centered finite differences were used
to calculate the isothermal compressibility at each state
point except for the limiting isochors (2398 kg/m3 and
4327 kg/m3) for which forward differences are required.
Values reported in EA-2 vary from 0.06 GPa�1 at 3533 K
and 0.84 GPa to 0.002 at 6100 K and 120 GPa. Couched
in terms of the isothermal bulk modulus, KT ¼ b�1

T , values
vary by a factor of 30 from �17 GPa to 503 GPa. The large
variation in bulk modulus with pressure is consistent with
the models of Bottinga (1985) who suggested that com-
pressibility variations in the Al-rich silicate melts NaAl-
Si2O6 and Mg3Al2Si3O12 are related to changes in melt
structure at high pressure. In the case of CaAl2Si2O8, the
variation in isothermal compressibility correlates with the
formation of silicon and aluminum pentahedrally coordi-
nated by oxygen (SiO[5] and AlO[5]) in distorted non-cor-
ner-sharing trigonal bipyramids, the destruction of silica
and alumina tetrahedra and the formation of Si, Al octahe-
dra as pressure increases (see below).

Once bT(P, T) is known, the isobaric expansivity
a(P, T) can be computed from the thermal pressure coef-
ficient and the compressibility. Computed values of the
isobaric expansivity are collected in electronic annex
EA-2. The highest value, 5.6 � 10�5 K�1 is found at
q = 2600 kg/m3, 3551 K and 2.3 GPa whereas the smallest
value, 1.1 � 10�5 K�1 occurs at 6102 K and 120 GPa. A
‘typical’ value for the isobaric expansivity of molten
CaAl2Si2O8 in the range 3500–6000 K and 0–120 GPa is
2.7 � 10�5 K�1.
osed circles) along the 12 isochores investigated by MD simulation.
ves are fits to the raw MD data taken from Part II (Ghiorso et al.,
e raw MD results.



Fig. 3. Test of the Rosenfeld–Tarazona (RT) scaling relation for
the Madelung energy (UP) of the melt as a function of temperature.
The kV term is introduced to make the plot more legible. V is the
constant molar volume along a particular isochore and k is an
arbitrary constant equal to 1 MJ/mol m3. RT scaling predicts the
MD data will fall along a straight line; evidently RT scaling is an
excellent approximation for molten CaAl2Si2O8 described by the
potential used in this study.
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4.1.3. Internal energy, isochoric heat capacity and Grüneisen

parameter

The molar internal energy is the sum of the potential and
kinetic energies, E = EP + EK and is computed at each pro-
duction simulation time step and then averaged over all steps
to give the values for a state point (electronic annex EA-1). In
general, EP >> EK; in particular EK is about 2–3% of the total
energy. For a classical ionic material, the kinetic energy is

Ek ¼
3

2
nRT ð3Þ

where R is the universal gas constant and n is the number of
atoms in one formula unit of the substance (n = 13 for
CaAl2Si2O8). Comparison of values in Table 1 with Eq.
(3) is excellent with a difference of less than 0.1%. Values
of the molar potential energy (EP) have been used to test
the fundamental-measure free energy functional form for
the liquid Madelung energy proposed by Rosenfeld and
Tarazona (1998). In RT scaling the temperature depen-
dence of the molar potential energy is given by

U P ¼ aðV Þ þ bðV ÞT 3=5 ð4Þ

where a(V) is the Helmholtz free energy at 0 K. Both the ‘a’
and ‘b’ are functions of volume alone. MD data were used
to test Eq. (4) and are shown in Fig. 3. If RT scaling was
exactly obeyed, UP would fall along linear arrays when
plotted against T3/5 since V is constant along an isochore.
The fit of the data to the RT scaling expectation is excellent
(see Part II for extended discussion). Combination of Eqs.
(3) and (4) gives for the molar internal energy

EðV ; T Þ ¼ aðV Þ þ bðV ÞT 3=5 þ 3

2
nRT ð5Þ

Values for the functions a(V) and b(V) are given in Part
II (Ghiorso et al., 2009).

The derivatives of the molar internal energy E(V, T) may
also be computed. The volume derivative of the internal en-
ergy is computed from the coordinates of the state point
and the thermal pressure coefficient,

@E
@V

� �
T

¼ T
@P
@T

� �
V

� P ð6Þ

and is given in EA-2. A strong negative dependence on den-
sity is noted with little temperature dependence. The iso-
choric heat capacity CV � ð@E

@T ÞV has been computed by
two methods. The fluctuations in UK in the microcanonical
(NEV) ensemble allows one to compute CV at each state
point by the expression

CV ¼
3kB

1� 3NðhU2
K
i�hUKi2Þ

3k2
BT 2

� � ð7Þ
Table 1
Self-diffusion fit parameters for Arrhenian Eq. (13) in text.

Species D0 (m2/s) E* (kJ/
mol)

V* (cm3/
mol)

r2 correlation
coefficient

Ca 3.80 � 10�7 176.5 1.57 0.926
Al 3.89 � 10�7 183.6 1.45 0.947
Si 3.25 � 10�7 187.9 1.41 0.954
O 3.98 � 10�7 169.7 0.81 0.979
where the brackets represent an average over all time steps
of the equilibrium MD simulation (i.e., the production sim-
ulation). A disadvantage of this method is the fluctuations
in UK will lead to fluctuations in CV. A second method to
compute CV less susceptible to statistical fluctuations is to
compute finite differences along isochores. Values for CV

computed by the second method are given in EA-2. These
show that CV decreases along an isochore as P and T

increase.
Finally, Grüneisen’s parameter

c ¼ aV
bCV

ð8Þ

where V is molar volume and CV the molar isochoric heat
capacity of liquid CaAl2Si2O8 can be computed. Values
are collected in EA-2. The Grüneisen parameter is virtually
independent of temperature and depends linearly on density
in the range 2400–3500 kg/m3. At density greater than
about 3500 kg/m3, c becomes nearly constant and ap-
proaches unity.

4.2. Coordination statistics and melt structure

Nearest neighbor distributions encapsulate short to
medium-range order (Ziman, 1972) in a liquid and enable
the connection between atomic structure and material prop-
erties to be understood, at least to first-order. Short-range
nearest neighbor structure is determined by statistical anal-
ysis of atom locations using partial pair correlation func-
tions (radial distribution functions, RDF) expressed,

gijðrÞ ¼
V

N 2

XN

i¼1

XN

j¼1;i–j

dðr � rijÞ
* +

ð9Þ

For atoms i and j, Eq. (9) gives the normalized averaged
distribution of atom i around a central j atom within a de-
fined cut-off distance. V is the volume of the MD primary
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cell and N the number of particles. The brackets denote
averaging. Numerical integration of the RDF determines
the coordination number for atom i around atom j based
on locating the distance of the first minimum in the ij-pair
RDF, gij(r), following the first maximum. This cut-off dis-
tance is uniquely determined at each state point. An archive
of nearest neighbor distributions of all atoms around all
other atoms at each state point is presented in electronic an-
nex EA-3. Here, the focus is on the statistics of Ca, Al, Si
and O around a central O and of O around central Si, Al
and Ca. For the range of P–T conditions investigated, T

varies by a factor of �2 (3500–6000 K) whereas P varies
by a factor of 102 (1–102 GPa). It follows, given typical val-
ues of a and b that pressure is the dominant variable affect-
ing melt density and hence structure in the P–T range of
this study. Overall the effects of temperature are relatively
muted compared to the dramatic effects of pressure.
Accordingly, we present a detailed discussion of the coordi-
nation statistics at 3500 K isotherm and follow with a brief
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Fig. 4. Coordination statistics at 3500 K as a function of pressure for S
coordination polyhedra is AB[n] where n is the number of B atoms that ar
around central oxygen. (b) Coordination of Al around central O. (c) Coo
atom. OT[1] is equivalent to non-bridging oxygen, NBO. (d) Coordinatio
discussion of the differences in coordination environments
between 3500 K and 6000 K. We adopt the notation AB[n]

where n is the number of B atoms that are nearest neighbors
to a central A atom. For example, a silicon octahedrally
coordinated by oxygen is written SiO[6] and an oxygen tet-
rahedrally coordinated by four other oxygen atoms is writ-
ten OO[4].

4.2.1. Coordination of Si, Al, Ca and O around oxygen

By mass, number fraction and volume CaAl2Si2O8 is
dominated by oxygen and therefore the coordination statis-
tics of Si, Al, Ca and O around central oxygen are examined
in detail. As pressure increases the average coordination of
Si around oxygen increases from 1.1 to 1.6 (EA-3 and
Fig. 4a). In particular, the concentration of oxygen with
one or two nearest neighbors of silicon (OSi[0] or OSi[1],
respectively) decreases whereas oxygen with two nearest
Si neighbors (OSi[2]) and OSi[3] (the latter as in stishovite)
increase as pressure is raised. For Al, similar trends are
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found (Fig. 4b) except that at any given pressure more of
the Al is in high coordination with O relative to Si at the
same pressure or density. In particular, the average CN of
Al around O increases from �1.2 to 1.8 from low pressure
to 110 GPa. In order to study the linkages between AlOn

and SiOn polyhedra and hence the intermediate range struc-
ture, it is useful to define the ‘fictive’ component T that rep-
resents either silicon or aluminum. In Fig. 4c, T–O statistics
are depicted. Non-bridging oxygen (OT[1]) is present in low
concentration (�5%) at low pressure and disappears as
pressure increases. The presence of OT[1], or non-bridging
oxygen (NBO), is consistent with the NMR spectroscopic
data of Stebbins and Xu (1997) on glassy CaAl2Si2O8.
These authors found �5 mol% NBO in CaAl2Si2O8 glass
quenched from high temperature at 1 bar, essentially the
same as found here in the liquid at circa 0.8 GPa and
3500 K. Most oxygen (�65%) has two nearest T neighbors
at low pressure, consistent with a high degree of polymeri-
zation define by the sharing of oxygen between TO4 tetrahe-
dra. Recall that in crystals of anorthite all Si and Al are in
twofold coordination with oxygen. As pressure rises, two-
fold T decreases, tricluster oxygen coordinated by Si or
Al (OT[3]) attains a maximum at circa 20 GPa and oxygen
with four nearest neighbors of either Si or Al (i.e., OT[4]) in-
creases monotonically. The increase in shear viscosity of
molten CaAl2Si2O8 with increasing pressure (see below)
correlates very well with the decrease in bridging oxygen
(OT[2]) and increase in tricluster and fourfold oxygen de-
picted in Fig. 4c.

Ca around O shows similar variation with pressure
(EA-3 and Fig. 4d) although an average Ca is surrounded
by slightly fewer oxygens compared to Si and Al, a feature
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Fig. 5. Coordination statistics at 3500 K as a function of pressure for o
around central silicon. (b) Coordination of oxygen around central Al. (c) C
structural changes at P < 20 GPa (see text for discussion).
consistent with the larger effective radii of Ca compared to
Si and Al. In detail, there is a decrease in concentration of
oxygen with no (OCa[0]) or one (OCa[1]) nearest Ca neigh-
bor and a concomitant increase in OCa[2] and tricluster
OCa[3] (i.e., oxygen with three nearest Ca neighbors) in
the pressure interval 0–20 GPa. The net effect is an increase
in the mean CN of Ca around O from less than unity to
�1.4 at high pressure.

Finally, the distribution of O around O – the topology
of the oxygen sub-lattice – is portrayed in Fig. 4e. The aver-
age coordination number (CN) of oxygen around oxygen is
�9 at low pressure and rapidly increases in the pressure
interval 0 < P < 20 GPa to �15. There is an especially rapid
increase in the range 0–5 GPa, the same pressure interval in
which the concentration of SiO5 and AlO5 polyhedra max-
imize. CN attains a broad plateau around 15 for pressure in
the range 40–60 GPa. There is evidently a profound reorga-
nization of the rate of change of the oxygen sub-lattice for
0 < P < 20 GPa that is largely complete by �20 GPa. In
Part II (Ghiorso et al., 2009) this is the approximate pres-
sure at of the transition from the low-P to high-P EOS.

4.2.2. Coordination of O around Si, Al and Ca

The coordination of oxygen around Si, Al and Ca is de-
picted in Fig. 5a–c. CN of O around Si increases from �4.4
to 6.4 with the most rapid change occurring 0–20 GPa (EA-
3; Fig. 5a). SiO[4] (Si fourfold coordinated by oxygen) de-
creases monotonically with increasing pressure and is virtu-
ally absent by 20 GPa. In contrast, SiO[5] attains a
maximum at �5 GPa with an abundance of 60% and there-
after decreases; its abundance is �30% at 30 GPa. From
Fig. 5, the rate of change in abundance of SiO[5] is quite
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large at low pressure. Inaccuracies of the potential might be
responsible for the rather high abundance of predicted pen-
tahedral Si at low pressure. 29Si MAS NMR spectral studies
by Stebbins and Poe (1999) on a CaSi2O5 glass quenched
from a liquid at 2600 K and 10 GPa demonstrated, in fact,
the presence of SiO[5] and SiO[6] although at lower (�3%)
concentration than found in the calcium aluminosilicate
composition studied here. Study is currently underway
using the transferable potential of Matsui (1998) to test
the sensitivity of SiO[n] and AlO[n] abundances on the poten-
tial parameters. Additional laboratory studies including
in situ measurements on calcium aluminosilicate liquids at
high temperature and pressure are needed to quantitatively
evaluate the abundance of pentahedral silicon and alumi-
num in liquid CaAl2Si2O8 as a function of pressure at high
temperature.

Silicon octahedrally coordinated by oxygen (SiO[6]), ini-
tially absent, increases rapidly in abundance in the interval
0–20 GPa and attains a broad abundance maximum of 75%
around 70 GPa. At the highest simulation pressure, octahe-
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Fig. 6. Coordination statistics at 6000 K as a function of pressure for Si,
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equivalent to non-bridging oxygen, NBO. (d) Coordination of Ca aroun
drally coordinated Si is the most abundant coordination
state for Si (�70%) followed by SiO[7] (�30%).

The effect of pressure on the CN of O around Al is de-
picted in Fig. 5b. The average CN of O around Al increases
from �4.5 to �7.3 across the pressure interval. The statis-
tics of O around Al are similar to those for O around Si ex-
cept that Al is more highly coordinated by O compared to
Si at a given pressure. This is expected due to its greater
effective size.

Finally, the coordination of O around Ca is displayed in
Fig. 5c. Once again, CN changes rapidly in the interval
0–20 GPa increasing from �7 to �10. At pressure greater
than 20 GPa, CN increases only slightly; at 110 GPa the
CN of O around Ca is �10.5.

4.2.3. Effect of temperature on structure

Figs. 6 and 7 are analogous to Figs. 4 and 5 and show
coordination statistics at 6000 K. Comparison of coordi-
nation statistics between 3500 K and 6000 K indicates a
small but noticeable effect. At 6000 K coordination
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number variations are related to those at 3500 K by pro-
viding an upwards ‘shift’ in the pressure of �5–10 GPa.
That is, a particular structural change (e.g., abundance
of SiO[4] equal to 10% of total SiO[n] species) occurs at
higher pressure at higher temperature. For example, Si
and Al in fivefold coordination at 3500 K peak at
5 GPa and 4.6 GPa, respectively whereas at 6000 K the
maxima occur at 10 GPa and 8 GPa, respectively
(Fig. 7a and b). The abundances of tetrahedral Si and
Al fall to 10% at 16 GPa and 18 GPa, respectively, at
3500 K whereas at 6000 K tetrahedral coordination is
more abundant and shrinks to 10% of the total SiOn

and AlOn at 25 GPa and 28 GPa, respectively. Similar
differences are noted by examining the arrangement of
oxygen around central Si or Al. For example, the abun-
dance of oxygen’s with one nearest Si neighbor equals the
abundance of oxygen’s with two nearest Si neighbors at
about 40 GPa at 3500 whereas this same condition holds
at about 70 GPa at 6000 K. At high temperature, the
melt is slightly more depolymerized than at lower temper-
ature. These systematic differences in melt structure as
temperature increases can be modeled by equilibrium
relations of the form OT[1] + OT[3] ? 2OT[2] (e.g., see
Morgan and Spera, 2001b). In summary, although there
are demonstrable changes in coordination as temperature
increases at fixed pressure, the differences are modest
compared to very dramatic changes in structure with
pressure isothermally. The latter are very significant espe-
cially in the interval 0–20 GPa and essentially govern the
change in transport properties of liquid CaAl2Si2O8 as
pressure increases (see below).
4.3. Self-diffusion of O, Si, Al and Ca

In a continuous system, the diffusion coefficient D is de-
fined by combining Fick’s first and second laws to give,

@C
@t
¼ Dr2C ð10Þ

where C(r, t) is the local density or concentration of some
atom. This result applies both to diffusion of one species
through another and to self-diffusion. At the discrete parti-
cle level concentration C may be written in terms of the Dir-
ac delta function, d(r)

Cðr; tÞ ¼
XNa

j¼1

dðr� rjðtÞÞ ð11Þ

For large t, the Einstein expression (McQuarrie, 1976)
for the Mean Square Displacement (MSD) is related to
the diffusion coefficient by

D ¼ 1

6N at

XN a

j¼1

½rjðtÞ � rjð0Þ�2
* +

ð12Þ

where Na refers to the number of atoms of species ‘a’ and
the quantity in brackets represents the MSD of the ath
atom type. Unfolded atomic trajectories are used in the cal-
culation of the tracer diffusivity since periodic boundary
conditions in the MD simulations imply a wraparound
(Rapaport, 1995). At each state point, the MSD for a par-
ticular species (Ca, Si, Al and O) is accumulated from the
unfolded atom trajectories and a plot of MSD versus time
is made. Following a brief (<1 ps) ballistic transport
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regime, the MSD average over all atoms of the same type
becomes linear; the slope of the MSD is directly propor-
tional to the self-diffusivity. Self-diffusivities at all state
points have been computed and are collected in electronic
annex EA-2; selected results and depicted in Fig. 8a–d
where D is plotted versus pressure for 4000–5500 K. At
low pressure (P < 3 GPa), DCa � DO > DAl > DSi with
DCa/DSi � 3–6. As found in the study of Nevins and Spera
(1998; see their Fig. 7), self-diffusivities exhibit ‘anomalous’
behavior at low pressure (0 < P < 2 GPa) such that D

increases as pressure increases. This is most apparent for
Al, Si and O by examining very closely the very low-pres-
sure region in Fig. 8, implying that activation volume is
negative or that increasing pressure increases the volume
of the activated region associated with self-diffusion at
low pressure. This anomalous behavior is related to the ob-
served coordination statistics at low pressure. In effect, the
network of linked SiO4 and AlO4 tetrahedra breaks down
rapidly in the P range 0–5 GPa and short-range order is
dominated by the abundance of trigonal bipyramidal poly-
hedra (SiO5 and AlO5). At higher pressure, the tracer diffu-
sivity magnitudes are ordered DO > DCa � DAl � DSi at all
temperatures. Ca, Al and Si diffuse at similar rates whereas
oxygen diffuses appreciably faster by about an order of
magnitude at the highest pressure studied. The deviation
between the oxygen diffusivity and that of Ca, Al and Si in-
creases as pressure increases along an isotherm.

4.3.1. Temperature and pressure dependence of self-

diffusivities

The simplest analytic form for the P–T variation of the
self-diffusivity is the Arrhenian expression,
Fig. 8. Self-diffusivity of Ca, Al, Si and O as a function of pressure along
mark the boundary between the low pressure and high pressure Arrheni
changes rapidly. Curves are based on parameters recorded in Table 3 for
5520 K. (b) Al self-diffusivity along isotherms. (c) Si self-diffusivity along
DðP ; T Þ ¼ D0 exp
�ðE� þ PV �Þ

RT

� �
ð13Þ

where D0, the pre-exponential ‘frequency factor’, is the
diffusivity in the limit T ?1, E* is the activation energy
for diffusion, V* is the activation volume for diffusion and
R is the universal gas constant. In Eq. (13), E* and V* are
constant. Arrhenian parameters D0, E* and V* for each
species obtained from fitting the self-diffusivity values to
Eq. (13) are given in Table 1. Activation energies lie in
the narrow range 170–188 kJ/mol. The activation volume
for oxygen V �oxygen � 0:8 cm3=mol whereas for Ca, Al and
Si, V* is about twice as large (�1.4–1.6 cm3/mol). A plot
of log D versus P should be linear along an isotherm if the
activation volume is strictly constant. Examination of
Fig. 8 reveals that the derivative ð@ ln D

@P ÞT ¼ �V �

RT decreases
as pressure increases. The decrease in V* as pressure in-
creases is most noticeable at low temperature (e.g.,
3500 K and 4000 K); at high temperatures, V* varies more
weakly with pressure although it clearly is not constant.
We have therefore explored the consequences of allowing
for variation of E* and V* with temperature, pressure
or both by comparing correlation coefficients for the dif-
ferent models. It is easy to show that model expressions
with E* = f(T), E* = f(P) or E* = f(P, T) do not produce
functional deviations from the usual Arrhenian form
(although the numerical values are different) and so are
not considered further. This leaves four models to com-
pare: V* = constant, V* = f(T), V* = f(P) and V* = f(P,
T). We find that the statistically best form is with activa-
tion volume a linear function of pressure, V � ¼ v�0 þ v�1P .
The self-diffusivity becomes
three isotherms. Raw MD values plotted as filled circles. The arrows
an fits and correspond to the pressure region where melt structure
low-P and high-P fits. (a) Ca self-diffusivity at 4020 K, 5020 K and
isotherms. (d) Oxygen self-diffusivity along isotherms.
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D ¼ D0 exp
�½E� þ ðv�0 þ v�1P ÞP �

RT

� �
ð14Þ

The constants for the model are listed in Table 2. Values
for D0 and E* change slightly from the simple Arrhenian
model, with E* in the range 166–181 kJ/mol and D0 values
about 10% higher. The constant v�0 represents the activation
volume at zero pressure and ranges from a minimum of
1.3 cm3/mol for O to 3 cm3/mol for Ca, Si and Al are sim-
ilar and equal to 2.5 cm3/mol which is roughly 5–10% of the
molar volume. The constant v�1, a measure of the pressure
dependence of the activation volume, is negative for all
atoms around �10�2 cm3/mol GPa. This means that the
volume of activation decreases with increasing pressure.
The correlation coefficient (r2) for the modified Arrhenian
fit (Eq. (14)) is improved over the simple Arrhenian model
(Eq. (13)).

An even better fit of diffusivity is achieved by recogniz-
ing the dramatic change in liquid structure taking place at
low pressures. Fig. 8 shows the results of a model with
low-P and high-P fits to the diffusion data. The pressure
of the ‘transition’ depends upon the temperature and occurs
in the 18–20 GPa range. This range is consistent with the
dramatic changes in melt structure revealed by coordina-
tion statistics. Regression parameters are gathered in Table
3 for the low-P and high-P fits. High-pressure fits for all ele-
ments are characterized by higher activation energies and
generally larger activation volumes. In particular, for the
low-pressure fit both Si and oxygen exhibit so-called ‘anom-
alous’ diffusion where self-diffusivity increases as pressure
increases, quite the opposite for ‘normal’ fluids. This anom-
alous behavior is associated with the negative activation
volume at zero pressure recorded in Table 3. The anoma-
lous region is subtle because the pressure interval on
Fig. 8 is so large. The anomalous effect is easier to see on
analogous plots in Nevins and Spera (1998) who found acti-
vation volumes around �25 to �35 cm3/mol at zero pres-
sure. At the atomic level, the anomalous behavior
correlates with the very rapid decrease in the abundance
of SiO4 and AlO4 polyhedra and the concomitant rapid in-
crease in the abundance of SiO5 and AlO5 polyhedra in the
range 0–5 GPa.

4.4. Comparison with laboratory diffusion results

There are no laboratory studies of self-diffusion in mol-
ten CaAl2Si2O8 at the P–T conditions of the MD simula-
tions. There are, however, some laboratory diffusion
Table 2
Activation energies and volumes computed by regression of MD-derived d
are given in rational units. In calculations, all quantities should be expres
multiple linear regression. Activation volume for both diffusion and visc

Self-diffusivity D0 or g0 (m2/s) or (Pa s) E* (kJ/mol) v�0

Ca 4.2 � 10�7 166.2 3.
Al 4.2 � 10�7 175.7 2.
Si 3.5 � 10�7 180.7 2.
O 4.1 � 10�7 166.4 1.
Viscosity 1.60 � 10�4 150.0 2.
results on compositions and structures similar or analogous
to molten anorthite and here we compare the MD-derived
values with these laboratory results.

The calculated value of 166 kJ/mol for E* for Ca (Table 2)
may be compared to the laboratory result of Jambon (1980)
of�191 kJ/mol for tracer Na diffusion in CaAl2Si2O8 glass at
900–1300 K and 10�4 GPa. It should be noted that the labo-
ratory value corresponds to a temperature below the glass
transition and therefore are not directly comparable to the
MD values. Oishi et al. (1975) measured self-diffusion coeffi-
cients in a melt of composition 40CaO	20Al2O3	40SiO2

(wt%). For comparison, CaAl2Si2O8 is 20CaO	
37Al2O3	43SiO2. They found at 1600–1900 K the ordering
DO > DCa > DAl > DSi, identical to the one found here for
molten CaAl2Si2O8. They found an activation energy for tra-
cer oxygen diffusion of about 210 kJ/mol which can be com-
pared to the MD result of 166 kJ/mol. Extrapolating the
laboratory results to 3500 K, diffusion coefficients for all
atoms in their study are larger by about a factor of 100 com-
pared to the MD results. This is the expected behavior in light
of the much greater concentration of CaO and smaller con-
centration of Al2O3 in the composition studied by Oishi
et al. (1975). Watson (1982) measured the diffusion of Ca
in dry obsidian. Extrapolating his result at 10�4 GPa to
3500 K gives DCa = 1.2 � 10�10 m2/s whereas the MD value
at the same pressure and temperature is DCa = 1.4 �
10�9 m2/s. Because of the difference in composition this com-
parison is semi-quantitative at best. LaTourrette et al. (1996)
studied self-diffusion of Ca in a haplobasaltic melt. They
found E* for Ca of 172 kJ/mol which compares favorably
with the MD result of 166 kJ/mol despite the difference in
composition. Consistent with the low viscosity of haploba-
salt liquid they found the pre-exponential term (D0) to be
about fifty times higher than D0 in CaAl2Si2O8 for Ca. Liang
et al. (1996) measured self-diffusivities for a number of com-
positions in the system CaO–Al2O3–SiO2 at 1 GPa and
1500 �C. The bulk composition closest to CaAl2Si2O8 was
20CaO	20Al2O3	60SiO2 (wt%). They found the ordering of
self-diffusivities to be DCa > DAl > DO > DSi which is similar
to the MD results except for the reversal in magnitudes of O
and Al. The self-diffusivities of Al, Si and O extrapolated
from the MD results are 1.4 � 10�12 m2/s, 0.9 � 10�12 m2/s
and 3.8 � 10�12 m2/s, respectively, and may be compared
to the laboratory values of Liang et al. (1996) of
2.3 � 10�12 m2/s, 1.4 � 10�12 m2/s and 4.7 � 10�12 m2/s,
for DAl, DSi and DO. Mungall et al. (1999) measured the Ca
tracer diffusivity in the haplogranitic bulk composition
4K2O	5Na2O	11Al2O3	80SiO2 (wt%). Extrapolation of their
iffusion and viscosity values. Numerical values for both E* and V*

sed strictly in SI units. r2 refers to the correlation coefficient of the
osity is a linear function of pressure, V � ¼ v�0 þ v�1P .

(cm3/mol) v�1 (cm3/mol GPa) r2 correlation coefficient

04 �1.42 � 10�2 0.979
57 �1.09 � 10�2 0.981
44 �9.92 � 10�3 0.982
29 �4.62 � 10�3 0.991
78 �1.3 � 10�2 0.985



Table 3
Activation energies and volumes computed by regression of MD-derived diffusion values. Numerical values for both E* and V* are given in
rational units. In calculations, all quantities should be expressed strictly in SI units. r2 refers to the correlation coefficient of the multiple linear
regression. Activation volume for diffusion is a linear function of pressure, v� ¼ v�0 þ v�1P . Low-pressure and high-pressure fits are provided.
Note the so-called anomalous behavior of Si and O at low pressures where the self-diffusivity increases as pressure rises along an isotherm.

Self-diffusivity D0 (m2/s) E* (kJ/mol) v�0 (cm3/mol) v�1 (cm3/mol GPa) r2 correlation coefficient

Low-pressure fit

Ca 3.93 � 10�7 155.4 4.90 �0.046 0.997
Al 2.65 � 10�7 162.2 0.79 0.115 0.998
Si 2.09 � 10�7 167.3 �0.059 0.152 0.998
O 2.29 � 10�7 151.0 �0.94 0.117 0.999

High-pressure fit

Ca 5.04 � 10�7 203.9 1.82 �5.45 � 10�3 0.970
Al 5.73 � 10�7 202.1 2.00 �6.71 � 10�3 0.968
Si 4.80 � 10�7 204.9 1.96 �6.50 � 10�3 0.972
O 6.43 � 10�7 178.9 1.45 �5.68 � 10�3 0.996
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laboratory result to 3500 K gives DCa = 5 � 10�9 m2/s
which may be compared to 1.4 � 10�9 m2/s from this study.
Dunn (1982) measured the self-diffusion of oxygen in melt of
composition 40CaMgSi2O6	60CaAl2Si2O8 at 10�4 GPa and
found an activation energy E* of 185 ± 25 kJ/mol which
compares favorably to E* = 166 kJ/mol found here.
Extrapolating his laboratory results to 3500 K give
DO = 2.3 � 10�9 m2/s which compares favorably to the
MD value of DO = 1.4 � 10�9 m2/s. Note that the composi-
tion Dunn studied was less viscous than molten CaAl2Si2O8.
Baker (1992) measured the tracer diffusivity of Si in an anhy-
drous rhyolitic melt at 1 GPa and 1300–1600 �C. He found
an activation energy for Si diffusion of 139 ± 40 kJ/mol con-
sistent within laboratory uncertainty with the value of
181 kJ/mol found here. Ryerson and McKeegan (1994)
found the activation energy for oxygen self-diffusion in crys-
talline anorthite to be 162 ± 36 kJ/mol which is comparable
to 181 kJ/mol found here for E�Si. Finally, Poe et al. (1997)
measured the pressure dependence of oxygen self-diffusion
in molten albite at 2100 K. They found a value for the activa-
tion volume V �oxygen of 2.2 cm3/mol at 5–16 GPa. This com-
pares with the value of 1.3 cm3/mol for oxygen from Table 3.

In conclusion, the lack of laboratory self-diffusion data
for liquid CaAl2Si2O8 makes direct comparison impossible.
However, comparison with laboratory data for similar
systems indicates good agreement with E* in the range
160–200 kJ/mol for all atoms and pre-exponential values
of order 10�7 m2/s. Activation volumes are �3 cm3/mol
for the metals and about half of that for oxygen at high
pressure. At low pressure, both Si and O show anomalous
behavior in accordance with laboratory studies on a related
(dacitic) composition (Tinker and Lesher, 2001; Tinker
et al., 2004). The activation volume for self-diffusion de-
creases for all atoms as pressure increases.
4.5. Shear viscosity

The shear viscosity was computed from the MD results
using linear response theory embodied as the Green–Kubo
(GK) relations. Shear viscosity is determined by studying
the temporal decay of appropriate stress components (both
off and on-diagonal; Rapaport, 1987). The Green–Kubo
(GK) expression for the shear viscosity is given by integra-
tion of the stress (pressure) autocorrelation function,

g ¼ V

3kT

Z 1

0

X
x<y

pxyðtÞpxyð0Þ
* +

dt ð15Þ

where g is the shear viscosity, V is the system volume, T is
the temperature, k is Boltzmann’s constant, and pxy refers
to the xy component of the stress. In addition to pxy, pxz

and pyz the first normal stress differences (pxx � pyy) and
(pyy � pzz) are also used to compute five independent esti-
mates of shear viscosity. The reported viscosity at a given
state point is the average of the five independent com-
puted values following the method detailed in Nevins
and Spera (2007). The parameters used to optimize the
viscosity computation include a fairly long simulation
duration (tD) of 2 ns, a window width (tW) of 2, 5, or
10 ps, and a time interval between the start of successive
time windows (tS) of 10 fs. The GK formulation utilizes
a single summation that consolidates the contributions
of all atoms into a single autocorrelation function. Alter-
native formulations based on particle displacement require
translational invariance, an assumption violated in MD
simulations utilizing periodic boundary conditions (Haile,
1992).

The shear viscosity of CaAl2Si2O8 in the pressure range
2.1–77.8 GPa, temperature range 3987–5563 K and density
range 2398–3772 kg/m3 calculated by the Green–Kubo
method is shown in Fig. 9. Plotted points represent the
MD values whereas the curves represent fits to the Arrhe-
nian relationship,
g ¼ g0 exp
E�g þ P ½v�g0

þ Pv�g1
�

RT

� �
ð16Þ
where E�g is the activation energy for viscous flow, R is the
universal gas constant and the activation volume for vis-
cous flow is a function of pressure, V �gðP Þ ¼ v�g0

þ v�g1
. Note

that Eq. (16) is analogous to Eq. (14). Calculated fit param-
eters are given in Table 3. Independent high- and low-P fits
were not performed although careful inspection of Fig. 9



Fig. 9. Shear viscosity of liquid CaAl2Si2O8 versus pressure along
isotherms. Closed circles, filled squares and filled triangles repre-
sent MD-derived values at 4020 K, 5020 K and 5520 K, respec-
tively. The curves are fits based on Eq. (16) and parameters in
Table 2.
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suggests that such a procedure could be justified although
further MD simulations would be required to test this.
The shallower slope at low pressure, especially at 4000–
5000 K, suggests that melt viscosity depends less strongly
on pressure at low pressure for T < 4500 K. This tendency
is consistent with laboratory measurements of Kushiro
(1981) and Taniguchi (1992). Although experimental data
are at much lower T, they show that at very low pressure
(0–2 GPa) melt viscosity is independent of pressure. At zero
pressure Eq. (16) predicts a 1 bar shear viscosity of 3.2 Pa s
compared to laboratory values in the range 5–15 Pa s. This
is a reasonable agreement; a change in the activation energy
of 10 kJ is sufficient to bring the MD results into agreement
with laboratory measurements, themselves subject to con-
siderable uncertainty. Predicted viscosity increases by a fac-
tor of 20, from 0.0043 Pa s to 0.091 Pa s at 5500 K as
pressure increases from 1 bar to 80 GPa. At 3500 K, the
estimated viscosity varies by a factor of �120 (0.028 Pa s
to 3.31 Pa s) for the same pressure range. The activation en-
ergy for viscous flow, 150 kJ mol�1, is close to the activa-
tion energy for oxygen self-diffusion (166 kJ mol�1) and
suggests that oxygen mobility is key to understanding vis-
cous flow. The zero-pressure activation volume for viscous
flow of �2.78 cm3 mol�1 is close to the zero-pressure acti-
vation volume for Ca, Si and Al self-diffusion (2.4–
3.0 cm3 mol�1) and about twice the value for oxygen self-
diffusion (1.3 cm3 mol�1). The activation volume for vis-
cous flow decreases by �0.013 cm3 mol�1 GPa�1 which is
comparable to analogous self-diffusion parameters (coeffi-
cient v�1) recorded in Table 3.
4.6. Size of activated cluster for viscous flow and diffusion

Because independent values for the self-diffusivity and
the shear viscosity are available from the MD simulations,
the applicability of the Eyring relation can be addressed.
Typically the Eyring or closely related Stokes–Einstein
(SE) relation is used to estimate shear viscosity from self-
diffusion data (or vice versa) by assuming a length scale
(‘size’) of the atom or cluster of atoms involved in the acti-
vated process of atom mobility. Ambiguity generally arises,
however, in selecting the ‘size’ of the activated cluster a pri-

ori. Here, we derive information regarding the nearest
neighbor distribution and size of the diffusing unit based
on MD-derived D and g values and compare these with li-
quid structures defined by coordination statistics. Lacks
et al. (2007) have used this approach in MD studies on
the binary MgO–SiO2 at 3000 K and found that the SE
relation works better than the Eyring relation in polymer-
ized melts and vice versa in unpolymerized melts. Here we
apply the Eyring relation to MD data covering a wide range
in PT space and show how the size of the activated complex
can be estimated.

The Eyring et al. (1982) formulation is based on an
atomic level picture involving a jump of a particular atom
(e.g., O, Si, Al or Ca) from one coordination environment
to another. These environments can be characterized by a
size related to the atom cluster involved in the diffusive
event. The EY relationship between self-diffusivity and vis-
cosity is

nðV =nNAÞ1=3 ¼ kT
Dg

ð17Þ

where n is the number of atoms per formula unit (n = 13),
V is the P–T dependant molar volume, NA is Avogadro’s
number and n + 1 is the number of atoms in the activated
complex. The ratio kT/gDO defines a scale-length k associ-
ated with the size of the ‘activated cluster’ involved in
atomic mobility and viscous shear flow. In Fig. 10,
k ¼ kT=gDO and n are is plotted for oxygen at 4000 K
and 6000 K. At both 4000 K and 6000 K, k decreases rap-
idly with pressure from around 18 Å (14–20 Å depending
on T) at 1 bar to �3.5 Å (2.5–5 Å depending on T) for
P > �50 GPa. The number of atoms in the activated clus-
ter changes from a �7–9 at low pressure to a smaller acti-
vated unit of 2–3 atoms according to the Eyring relation.
The rapid change in k and n for 0 < P < 20 GPa is consis-
tent with the picture of melt structure, EOS and self-diffu-
sion results presented earlier. The rapid reorganization of
the melt from a ‘4–5’ to a ‘6’-fluid takes place in the same
pressure interval where the size of the activated complex
shrinks appreciably.
5. CONCLUSIONS

Molecular dynamics simulations of molten CaAl2Si2O8,
a canonical network fluid, have been carried out at 72 state
points spanning ranges in q (2398–4327 kg/m3), T (3490–
6100 K) and P (0.84–120 GPa) relevant to geosystems.
Documentation of thermodynamic, transport and coordi-
nation statistics is presented in an electronic annex (EA-1,
EA-2 and EA-3). The calculations enable a detailed exam-
ination of the coordination of Si, Al and Ca around central
O as well as the coordination of O around central Si, Al, Ca
and O as a function of P and T to study the relationship be-
tween melt structure and properties – both thermodynamic
and transport – in liquid CaAl2Si2O8. Melt structure



Fig. 10. Eyring plot based on oxygen diffusivity and Eq. (17).
Characteristic length k based on oxygen at 6000 K and 4000 K
shows a strong dependence on pressure. At 4000 K for example, k
decreases from �14 Å to �3 Å. Right hand scale gives the nearest
neighbor count of atoms surrounding a mobile oxygen. At 4000 K
this varies from �10 to �1 as pressure increases from 0 GPa to
�100 GPa.
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undergoes dramatic changes as pressure increases especially
in the range 0–20 GPa. Pentahedrally coordinated Si and Al
in distorted trigonal bipyramids attain abundance maxima
of �60% at 3–5 GPa and contrasts the behavior of rapidly
decreasing TO[4] and rapidly increasing TO[6] polyhedra
abundances. The coordination of oxygen around Ca and
of oxygen around itself increases rapidly for
0 < P < 20 GPa and increases less quickly at higher pres-
sure. The proportion of non-bridging oxygen decreases
whereas oxygen with two or three nearest neighbors of Si,
Al or Ca increases as pressure increases. These dramatic
changes in melt structure are reflected in the variation of
thermodynamic, and transport properties of the liquid.
The equation of state and variation of internal energy with
T and V, used in Part II to derive a comprehensive thermo-
dynamic description of liquid CaAl2Si2O8, are best fit by
allowing for EOS expressions broken into low-P
(P < 20 GPa) and high-P (P > 20 GPa) intervals in accord
with the atom coordination statistics. Values of the self-dif-
fusivities of Ca, Al, Si and O are presented spanning the
range of P and T of the MD simulations and are fit well
by a modified Arrhenian expression in which the activation
volume is a linear function of pressure only. Activation
energies and volumes are computed for each atom and lie
in the range 150–205 kJ/mol and 5 to �1 cm3/mol depend-
ing on atom type and pressure range. A small pressure re-
gion exists for O and Si described by ‘anomalous’
diffusion. Self-diffusion values are best fit by ‘low P’ and
‘high P’ fits. Extrapolations of the MD-derived expressions
compare reasonably with laboratory self-diffusivity mea-
surements. Green–Kubo calculations for the shear viscosity
of molten CaAl2Si2O8 are presented enabling application of
the Eyring model to determine the characteristic size and
number of atoms in the activated cluster. The latter de-
creases from �8 to �3 from low to high pressure and pro-
vides additional insight into the mobility dynamics.
Comparison of laboratory falling sphere viscosity values
and MD-derived values is quite reasonable.
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