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Abstract—Molecular dynamics (MD) simulation provides a unique window into the dynamics of amorphous
silicates of geochemical importance. Of special interest are theories of the glass transition and viscosity when
an equilibrium liquid passes through the metastable supercooled liquid state to become a nonequilibrium glass.
Viscosity increases enormously in a small temperature range around the glass transition temperature. Twenty
MD simulations utilizing 1300 particles were conducted for CaAl2Si2O8 at temperatures in the range 1700 to
5000 K along the� 1 GPa isobar. A pairwise potential with Coulombic and Born-Mayer interaction was used
in the evaluation of forces. Simulation durations range from 50 to 150 ps. Previously, structures, thermody-
namic properties, and tracer diffusivities were determined as a function of temperature for liquid and glass
(Morgan and Spera, 2001). Here, the focus is upon atomic cooperative motion at the nanometer scale and
theories of viscosity illuminated by correlation analysis and tagged particle dynamics. Dramatic differences in
the dynamics of particles monitored by the nongaussian component of atom self-diffusivity, the van Hove
correlation function and the intermediate scattering function appear near the (computer) glass transition
temperature Tg � 2800 K. At T � Tg, the van Hove correlation function for oxygen and calcium exhibits a
double-peaked structure characteristic of hopping diffusion through correlated jumps involving neighboring
particles to nearest neighbor sites in an otherwise “frozen” structure. The crossover between continuous
(hydrodynamic-like) motion and hopping motion shows up in the time dependence of the mean square
displacement as a function of temperature and in the temporal decay of microscopic density fluctuations given
by the intermediate scattering function. A particle and its neighbors remain trapped for a finite waiting time
before undergoing a cooperative thermally activated rearrangement that is based on an elementary hop. The
waiting time distribution is strongly temperature dependent and related to the dramatic increase in structural
relaxation time as temperature approaches Tg. Three models for the glass transition—the Adam-Gibbs
configurational entropy model, mode-coupling theory, and the stochastic trapping diffusion model—are
discussed in light of the MD simulations. Although each model offers novel insight into the glass transition
and the relationship between structural relaxation and atomic-scale dynamics, no single model is complete.
The MD simulations are consistent with a picture of “dynamic heterogeneity” as the cause of the sluggish
dynamics as an equilibrium liquid becomes deeply supercooled. At some temperature above the Kauzmann
temperature (TK) where the extrapolated entropy of supercooled liquid equals that of crystalline solid,
long-lived, highly cooperative, collective particle motions take place in restricted regions of three-dimensional
space. Subsets of particles exhibit faster or slower than average relaxation rates. The relationship of dynamic
heterogeneity viewed in three-dimensional Euclidean space to its analog in 6N-dimensional-phase space
remains to be elucidated. Specifically, the lifetime and sizes of cooperatively rearranging regions as a function
of temperature needs further study. Self-organization of cooperatively rearranging regions demands further
investigation as well.Copyright © 2001 Elsevier Science Ltd

1. INTRODUCTION

Glasses constitute an important class of materials from both
fundamental and practical viewpoints. Although they are
among the most ancient natural materials used by humans,
knowledge of their structure, dynamics, and properties remains
surprisingly incomplete. Unlike crystalline solids and dilute
gasses, a reasonably complete theory of liquids and of amor-
phous (glassy) solids is not available. Glasses are especially
important geological materials. On Earth, rapid cooling of
magma produces about a billion cubic meters (1 km3) of glass
each year, mainly along the 70,000-km globe-encircling oce-
anic ridge system. Global geochemical interchange between
hydrosphere, biosphere, and lithosphere is strongly influenced
by reactions of natural glass with aqueous solutions of varying

temperature, pressure, and composition. Glass is also an im-
portant material on other planetary bodies. Glass forms during
the ubiquitous process of shock compression accompanying
hypervelocity impact of planetary materials. An understanding
of the nature of glasses, and supercooled and equilibrium
liquids is important for a variety of environmental, geoscience,
and technological problems.

The literature on glasses, structural relaxation, the glass
transition, theories of liquid viscosity, and the connection be-
tween the properties and structure of liquids and glasses is vast,
reflecting the importance of these problems. Many excellent
reviews are available, including those by Zallen (1983), Hansen
and McDonald (1986), Zarzycki (1991), Binder (1995), Kob
(1995, 1999), Debenedetti (1996), and Angell (1991). The
review volume edited by Stebbins et al. (1995) presents a
summary of the structure, dynamics, and properties of melts,
metastable liquids, and glasses of geochemical importance.
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In this work, the microscopic dynamics of CaAl2Si2O8 are
studied as a function of temperature from 1700 to 5000 K along
the � 1 GPa isobar by use of the molecular dynamics (MD)
technique. Although cooling through the glass transition is
accompanied by little static structural change (Morgan and
Spera, 2001), dramatic changes in atom mobility, the rate of
structural relaxation, and the qualitative features of atomic-
scale motion take place as the glass transition temperature is
approached. These changes are elucidated by studying the
correlated motions of oxygen, calcium, aluminum, and silicon
in stoichiometric CaAl2Si2O8 by means of the van Hove cor-
relation function, the intermediate scattering function and the
nongaussian part of self-diffusivity. In addition, three existent
theories of the glass transition, the Adam-Gibbs configurational
entropy model (AGSC), the mode-coupling theory (MCT), and
the stochastic trap diffusion model (STDM) are reviewed in
light of the MD results.

Several MD studies on liquid and glassy anorthite have been
reported previously. These are briefly reviewed to provide a
context for the results and conclusions drawn in the present
investigation. A study of the effects of pressure on the structure
and properties of molten (equilibrium liquid) CaAl2Si2O8 at
T � 4000 K (well above the computer glass transition temper-
ature of Tg � 2800 K) from low pressure to 76 GPa was
presented by Nevins and Spera (1998). They found that pro-
found changes in short-range structure and atom mobility occur
as pressure increases along the 4000 K isotherm in molten
CaAl2Si2O8. The abundance of TO4 and TO6 (T � Si, Al)
polyhedra monotonically decrease and increase, respectively,
as pressure increases, whereas the concentration of distorted
trigonal bipyramids of pentahedrally coordinated T (TO5) goes
through a maximum at 5 GPa. Interestingly, at � 5 GPa, all
atoms attain global maxima in tracer diffusivity. This, together
with the observation of comparably large (�20 to 30 cm3/mol)
activation volumes for all atoms, suggests cooperative atomic
mobility in the equilibrium liquid. They also noted significant
changes in the oxygen about oxygen and oxygen about T
coordination on increasing pressure along the 4000 K isotherm.
The former changes rapidly in the 0- to 10-GPa range, whereas
the latter exhibits a broad peak in [3]O (i.e., oxygen with three
nearest T neighbors as in the stishovite structure) around 40
GPa that reflects the increasing proportion of TO6 polyhedra as
pressure increases. The formation of significant amounts of
TOn (n � 5, 6) polyhedra drastically alters medium-range (0.5
to 1.5 nm) structure by frustration of corner-sharing TO4 ring
formation. Because simulations preformed by Nevins and
Spera (1998) were carried out isothermally, neither the temper-
ature dependence of the short-range structure of equilibrium
liquid nor the glass transition could be studied.

In the study of Morgan and Spera (2001), changes in the
structure, thermodynamic, and tracer diffusive properties of
CaAl2Si2O8 at temperatures corresponding to the equilibrium
liquid through the metastable supercooled liquid state, and
finally to the nonequilibrium glass were explored along the �
1-GPa isobar. The computer glass transition was detected as a
break in slope of molar enthalpy (H) vs. temperature at T �
Tg � 2800 K. The difference in isobaric heat capacity between
supercooled melt and glass at Tg was found to be 53.3 J/K mol,
in fair agreement with the calorimetric value when adjusted for
the lower temperature of the laboratory glass transition at T �

1160 K. The computer isobaric heat capacity for equilibrium
liquid at 3000 K of 457 � 35 J/K mol is identical, within error,
to the calorimetric value of 461 J/K mol. They also showed that
speciation in the equilibrium liquid (i.e., for T � 2800 K)
defined by reactions [1]O � [3]O � 2 [2]O and TO4 � TO6 �
2 TO5 were characterized by the thermodynamic parameters
�H and �S approximately equal to 	39 kJ/mol and 19 J/mol K
and 	10 kJ/mol and 12 J/mol K, respectively, in good agree-
ment with the laboratory value of 	35 kJ/mol for the enthalpy
of the oxygen speciation reaction. They noted that for T � 2800
K, all speciation equilibria become “frozen.” Finally, Morgan
and Spera (2001) computed the tracer diffusivity for all atoms
in the temperature range of the MD simulations. At fixed
temperature, the magnitude of self-diffusivities ordered accord-
ing to DCa � DO � DAl � DSi, with DCa � 20% larger than DO

and DO � 2 DSi. Activation energies for diffusion for all atoms
were found to lie in the rather restricted range 170 to 190
kJ/mol. The small range in tracer diffusivity, activation energy
(Ea) and activation volume (Va) for all atoms at a given
temperature suggests cooperative motion is important in their
collective mobility (see also Lesher et al., 1996; Pakula and
Teichmann, 1997; Bryce et al., 1999).

2. MATERIALS AND METHODS

The MD simulations were performed on IBM RS 6000-43P and RS
6000-350 workstations by use of FORTRAN algorithms developed
from Allen and Tildesley (1987) by Rustad et al. (1990) and modified
by Stein and Spera (1995, 1996). Further details may be found in Stein
and Spera (1995), Nevins and Spera (1998), Bryce et al. (1999), and
Morgan and Spera (2001). A simple pairwise additive intermolecular
potential containing Coulomb interactions and exponential Born-
Mayer-Huggins repulsion was used: Uij � qiqj/rij � Aijexp (	Bijrij).
The size and softness parameters found in Scamehorn and Angell
(1991) have been mapped into the form of Aij and Bij (see Table 1),
where the full ionic charge between particle i, qi and particle j, qj is
separated by the interparticle distance rij. The Ewald method was used
to compute the Coulomb interaction for each ion, and a cutoff of 8 Å
was used in evaluation of repulsive forces. The gaussian distribution
canceling parameter, �, was set to 5/L, where L is the length of the
primary MD cubic box edge. The sum over the reciprocal lattice
vectors k � 2�n/L were determined for all 
n
2 � 81. Most simulations
were performed with 1300 particles for 50 ps at 1-fs time steps. Two
simulations (T � 2670 and 3475 K) were carried out to 150 ps with
N � 1300 particles to study relaxation at longer times. All production
run simulations were performed in the fixed number, volume, and
energy microcanonical ensemble and momentum and energy were
conserved to greater than one part in 105. The temperature, pressure,
density, energy (total and potential), and simulation durations are listed
in Table 2. Typical temperature fluctuations are �50 K; the pressure
fluctuations are �0.7 GPa. The average pressure of 17 simulations is

Table 1. Potential parameters.

Species i Species j Aij (� 10	9 erg) Bij (� 108 cm	1)

Ca Ca 15.387 3.4483
Al Ca 7.7528 3.4483
Al Al 3.8831 3.4483
Si Al 3.7906 3.4483
Si Ca 7.6069 3.4483
Si O 3.1295 3.4483
Si Si 3.6839 3.4483
O Ca 5.9082 3.4483
O Al 3.0913 3.4483
O O 1.7014 3.4483
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1.05 GPa with a standard deviation (1�) of 0.37 GPa, smaller than
typical pressure fluctuations during a single run.

The cooling schedule involved an initial system of 100 Ca, 800 O,
and 200 Al and 200 Si ions randomly configured at T � 100,000 K.
Large intermolecular potential forces were allowed to relax for a period
of 10 ps before the system was quenched to 10,000 K at rate � �
dT/dt � 10,000 K/ps by velocity scaling. Excess momentum in the
system was then removed and the system equilibrated for 10 ps. From
10,000 K, a configuration at 3000 K and 1.35 GPa was obtained with
a temperature quench rate of 700 K/ps and a pressure quench rate
(dP/dt) of 1 GPa/ps. This configuration at 3000 K was the initial
configuration for all production runs. To remain along the isobar, the
system was either cooled or heated at a quench rate � � 70 K/ps
isobarically. Once the desired temperature was achieved and velocity
scaling turned off, a 50- or 150-ps number, volume, and energy
production simulation was performed. These production trajectories
represent the data analyzed in the sections below.

3. RESULTS

3.1. Tracer Diffusivity: Three Regimes

The tracer or self-diffusivity of a particular atom type (e.g.,
oxygen or silicon) is a collective property representing a
coarse-grained or statistical measure of an underlying micro-
scopic process—the “simple” motion of an individual atom.
Circumstantial evidence summarized above suggests atomic
diffusion is cooperative in CaAl2Si2O8 on the basis of the
similarity of the magnitude of self-diffusion coefficients, acti-
vation energies, and activation volumes for O, Ca, Si, and Al.
In what follows, we look more deeply into this issue to better
understand the mechanism of diffusion and to investigate be-
havior as a function of temperature near the glass transition.
This is the essence of the glass transition problem because
viscous flow implies some sort of material transport.

Tracer diffusivity (Di) for each atom is computed from the
mean square displacement (MSD) of a tagged particle averaged
over all atoms of the same type over the duration of the
simulation. By use of the Einstein relation (random walk), the
tracer or self-diffusivity for the ith ion is

Di � lim
t3�


�ri(t) 	 ri(0)�2�
6t

(1)

where the numerator is the MSD of the ith ion and the brackets
imply an average over an equilibrium ensemble or, equivalently
by invoking ergodicity, over a set of initial times sampled from
the run after it has reached equilibrium. In this study, 100 time
origins were used in Eqn. 1. Tracer diffusivities for Ca, Al, Si,
and O at representative temperatures spanning the glass tran-
sition are plotted in Figure 1, which shows the variation of the
MSD of a particle vs. time. Note this is a logarithmic plot with
timescale varying from the femtosecond, corresponding to
quasilattice vibration, to �100 ps; MSDs exceed 100 Å2 for
calcium and oxygen atoms at high temperature.

Three distinct transport regimes are identified for each
atom on Figure 1. At very short times, atoms move along
ballistic paths and the square of the mean particle displace-
ment scales as MSD � t2. This behavior is noted in Figure
1 at all temperatures and all atoms to �5 fs and shows the
dominating effects of inertia at small time as atoms fly on
ballistic trajectories. In contrast, at longer times, atomic
mobility depends markedly on temperature. At high temper-
atures, in the normal liquid range (T � Tg) Einstein random
walk governs atomic motion. For times greater than �10 ps,
MSD � t. This is observed on Figure 1 at high temperature
for all atoms, even the least mobile ones, silicon and alumi-
num (Figs. 1b,c). As T decreases toward Tg, a dramatic
change occurs. A “plateau” region of subdiffusion occurs,
and the duration of the plateau interval increases as temper-
ature is lowered. At T � Tg, for example, a well-developed
plateau is apparent for all atoms in the approximate time
window 0.1 to 10 ps. At T � Tg, the plateau extends out to
20 to 30 ps for calcium and �50 ps for slow-moving silicon.
The correlation MSD � t�, where � is an increasing function
of temperature, holds very roughly for t � � 0.1 ps. The
power-law exponent � goes to unity in the limit t 3 � 3 for
T � Tg. In detail, a more complex variation of MSD with
time is noted from Figure 1. At �5000 K, the result expected
for hydrodynamic diffusion (uncorrelated random walk),
MSD � t is attained at t � 10 ps. In contrast, at low
temperature (1700 K), the subdiffusive regime dominates

Table 2. Molecular dynamics simulation physical data summary: CaAl2Si2O8.

T (K) P (GPa) � (kg/m3)
Total Energy

(kJ/mol) Potential Energy (kJ/mol)
Duration

(ps)

1707 � 29 1.32 � 0.45 2605 	4.246 � 104 	4.274 � 104 � 7.210 � 102 50
1871 � 33 0.45 � 0.55 2503 	4.239 � 104 	4.271 � 104 � 7.443 � 102 50
2013 � 37 1.20 � 0.51 2559 	4.235 � 104 	4.269 � 104 � 7.778 � 102 50
2239 � 40 0.88 � 0.57 2495 	4.227 � 104 	4.265 � 104 � 7.555 � 102 50
2320 � 41 1.00 � 0.56 2561 	4.224 � 104 	4.263 � 104 � 7.412 � 102 50
2542 � 46 1.18 � 0.59 2553 	4.215 � 104 	4.258 � 104 � 7.566 � 102 50
2670 � 50 1.04 � 0.60 2504 	4.212 � 104 	4.256 � 104 � 7.871 � 102 150
2868 � 58 1.15 � 0.66 2502 	4.203 � 104 	4.251 � 104 � 8.478 � 102 50
2947 � 51 0.86 � 0.65 2448 	4.200 � 104 	4.248 � 104 � 7.271 � 102 50
3086 � 60 1.03 � 0.70 2466 	4.194 � 104 	4.245 � 104 � 8.034 � 102 50
3150 � 57 1.24 � 0.71 2465 	4.192 � 104 	4.244 � 104 � 7.539 � 102 50
3475 � 62 1.12 � 0.71 2458 	4.178 � 104 	4.235 � 104 � 7.435 � 102 150
3481 � 62 1.17 � 0.73 2465 	4.177 � 104 	4.234 � 104 � 7.431 � 102 50
3983 � 72 1.33 � 0.75 2434 	4.156 � 104 	4.223 � 104 � 7.469 � 102 50
4151 � 72 0.17 � 0.78 2465 	4.150 � 104 	4.218 � 104 � 7.239 � 102 50
4500 � 41 1.88 � 0.81 2465 	4.135 � 104 	4.208 � 104 � 3.743 � 102 50
4976 � 87 0.85 � 0.81 2466 	4.115 � 104 	4.196 � 104 � 7.324 � 102 50
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and extends out beyond 50 ps, the time limit of Figure 1.
Accurate assessment of the relationship between the MSD
and time awaits further study especially at long times and
low temperature. Horbach et al. (1998) found similar results
for amorphous silica studied by MD simulation.

A qualitative microscopic interpretation of atomic diffusion
in CaAl2Si2O8 focusing on oxygen may be offered. Oxygen
becomes temporarily trapped in cages defined by the oxygen,
T, and Ca sublattices for increasing periods as temperature
drops. The short-range structure defining these coordination
cages was characterized in detail in the study of Morgan and
Spera (2001). The vibration of oxygen in this trapped mode
contributes little to its MSD (see Fig. 1d). As temperature
increases, distinguishing the motion of oxygen within a cage
from the jump motion becomes difficult. The primary qualita-
tive feature is that a given particle, and its neighbors remain
trapped for a finite period before undergoing a thermally acti-
vated hop. Furthermore, the jump motion entails a cooperative
rearrangement among at least several atoms because the atoms
defining a coordination cage are themselves caged. The distri-
bution of “waiting times” is strongly temperature dependent
and related to the dramatic increase in structural relaxation time
as temperature approaches Tg.

3.2. van Hove Self-Correlation Function

Further insight into the microscopic dynamics of diffusion is
garnered by study of the self part of the van Hove correlation
function, defined as

Gs(r,t) �
1

N ��
i�1

N

	[r 	 �rt(0) 	 rt(t)�]�. (2)

The function P(r,t) � 4�r2Gs(r,t) gives the likelihood that a
particle at r � 0 at t � 0 has moved a distance r in time t. For
Fickian diffusion in an equilibrium liquid, Gs(r,t) decays to zero
as t3 � and large distances according to the classical gaussian
hydrodynamic relation:

Gs(r,t) �
1

(4�Dit)
2⁄3 exp � 	

r2

4Dit
�, (3)

where Di is the tracer diffusivity of the ith ion. When diffusion
occurs by jumps or hops to nearest neighbor sites, P(r,t) exhib-
its a multipeaked structure. Such structure is expected as Tg is
approached because the waiting time between successive hops
of a particle becomes comparable (although still shorter than)
the duration of the simulation.

In Figures 2 to 5, P(r,t) is plotted for calcium, oxygen,

Fig. 1. Logarithmic plot of the MSD vs. time illustrating the ballistic, subdiffusive and diffusive regime (see text). The
dotted line (slope of two) and the dashed line (slope of one) are included to differentiate the regimes. The average
temperatures of the simulations are 1713, 2884, and 4956 K, bottom to top, spanning the (computer) Tg.
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Fig. 2. van Hove correlation function for calcium, 4�r2Gs(r,t). P(r,t) vs. radial distance, r for times, t � 2.5, 5, 10, 20,
30, and 40 ps. P(r,t � 2.5 ps) has the largest amplitude on all plots. (a) T � 1707 K. (b) T � 2013 K. (c) T � 2542 K.
(d) T � 2868 K. (e) T � 3086 K. (f) T � 3481 K. (g) T � 4151 K. (h) T � 4976 K.
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Fig. 3. van Hove correlation function for oxygen, 4�r2Gs(r,t). See Figure 2 legend for details.
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Fig. 4. van Hove correlation function for aluminum, 4�r2Gs(r,t). See Figure 2 legend for details.
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Fig. 5. van Hove correlation function for silicon, 4�r2Gs(r,t). See Figure 2 legend for details.
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aluminum, and silicon against r at various times for tempera-
tures spanning the glass transition. Inspection of these plots
reveals important features of the dynamics of atomic-scale
diffusion in CaAl2Si2O8. The discussion below is based on
examination of van Hove correlation plots for all temperatures
listed in Table 2. For brevity, only a representative sampling of
these temperatures is included in Figures 2 to 5.

In Figure 2, the self part of the van Hove correlation function
for calcium is shown for temperatures between 1707 and 4976
K. At 1707 K, there is little change in the r value of the first
peak, although the amplitude of the maximum decays as time
progresses. At T � 2320 K (data not shown), a broad shoulder
develops at t � 30 ps at r � 4.5 Å, corresponding roughly to the
distance between second-nearest neighbor calcium atoms. At
T � 2542 K, the shoulder develops into a second peak by t �
20 ps. This is evidence for calcium hopping (jump motion)
between oxygen-defined caged sites (see fig. 4a in Morgan and
Spera, 2001). At T � 2500 K, the first peak of the van Hove
correlation function begins to show significant migration as
time increases. Around Tg (2600 to 3000 K), the distinctness of
the second peak is muted by the migration of the first peak for
t � 30 ps. Finally, at T � Tg, P(r,t) takes on the form expected
for equilibrium liquids: a single peak that rapidly decays shift-
ing to increasing r as t 3 �.

The evolution of the oxygen P(r,t) is traced from 1707 to
4976 K in Figure 3. The overall progression is similar to that
for calcium, although the development of the second “hopping”
peak is somewhat muted. At 1707 to 2013 K, there is little peak
migration at least until 40 ps, and a small shoulder around r �
2.7 Å (close to the average first neighbor O-O separation)
develops on the tail of P(r,t). At higher temperatures (2320 to
2670 K), the amplitude of the shoulder first grows and then
amalgamates with the primary peak that migrates to larger
distances. Figure 3d (T � 2868 K) exhibits the characteristics
of an equilibrium liquid with a typical gaussian van Hove
probability distribution. Tg is located roughly around 2800 K
on the basis of van Hove analysis of oxygen mobility. The
conspicuous shoulder apparent in Figures 3a–c indicates that
jump motion contributes substantially to oxygen mobility.

The van Hove correlation functions for aluminum (Fig. 4)
and silicon (Fig. 5) are similar; discussion here is limited to
silicon. For T � 2500 K, there is little migration of the P(r,t)
peak position, consistent with the frozen structure at T � Tg. A
key difference between both Al and Si compared with Ca and
oxygen is the lack of a shoulder or second peak in the P(r,t) at
T � Tg. This indicates that hopping is less frequent for Al and
Si compared with oxygen and calcium. In terms of the MSD vs.
t relationship in Figure 1, the duration of the subdiffusive
regime is longer for Si and Al compared with the more mobile
Ca and O.

In summary, analysis of the van Hove correlation function,
specifically its dependence on temperature, enables one to
differentiate the frozen from unfrozen (ergodic) state. At low
temperature (T � Tg), the bimodal form of P(r,t) indicates an
important role for jumps in explaining atomic mobility. Jumps
probably remain important for T � Tg, but jump motion be-
comes difficult to separate from cage drift when the displace-
ment of an atom as a result of cage drift becomes comparable
to the MSD associated with “out-of-cage” cooperative hopping.

3.3. Self-Intermediate Scattering Functions

Scattering functions were computed from MD data that used
particle locations as a function of time. The time evolution of
this density–density correlation function provides information
regarding the spatial and temporal decay of density fluctuations
expressed in terms of Fourier components, �k, of the instanta-
neous number density of the different atoms making up the
material. The number density (collective) autocorrelation func-
tion is defined as:

FNN(k,t) �
1

N

�k(t)�	k(t)� (4)

where k is the wave vector, k � k, and �k(t) is a Fourier
component of the instantaneous microscopic density defined as

�k(t) � �
j � 1

N

exp�ik�rj(t)� (5)

(Hansen and McDonald, 1986). The brackets in Eqn. 4 imply
an ensemble average has been taken. The “self” part of the
scattering function, where only one type of atom is considered,
is more accurately computed than the nonself part because of
better sampling statistics. Here we focus wholly on the self-
intermediate scattering function defined:

Fs
�
��k,t� �

1

N�
�
�
j � 1

N�
�


exp{ik � �rj�t� � rj�0��}�, (6)

with 
 
 {Ca, Al, Si, O}. In general, the decay rate of the
scattering function increases with k because short wavelength
fluctuations in microscopic density die out more rapidly than
longer ones. Fs(k,t) provides information regarding the tempo-
ral decay of microscopic “same-atom” density fluctuations as a
function of spatial scale (monitored by k, the wave vector) and
temperature.

It is helpful to study the time dependence of the scattering
function at a fixed k. Typically one chooses the value of k at
which the partial static structure factor, S

(r), defined

S

�k� � 1 � 4�
N


V 	
0

�

� g

�r� � 1�
sin�kr�

kr
r2dr (7)

attains a maximum (kmax). The static structure factor S(k) is
closely related to the intermediate scattering function in that the
later is just a time-dependent generalization of the former, e.g.,
S(k) � Fs(k,0). In Eqn. 7, g

(r) is the self-atom pair correla-
tion function and N
 is the number of atoms of type 
. For
example, the value is kmax � 2.64 Å	1 for oxygen (Fig. 6d).
Physically, this corresponds to a distance r � 2�/kmax � 2.4 Å,
roughly the distance of the first peak in the oxygen–oxygen
pair correlation function, gOO(r) (Morgan and Spera, 2001).
The static partial structure factor is plotted for all atoms and
representative temperatures in Figure 6.

The self part of the intermediate scattering function for all
atoms computed from Eqn. 6 at appropriate kmax (from Fig. 6)
is plotted against the logarithm of time for all simulations
(Table 2) in Figure 7. As Tg is approached, the scattering
function decays qualitatively differently compared with equi-
librium liquid. In all cases, at very short times (�0.2 fs), Fs

approaches unity because every atom is localized at its origin at
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t � 0. As time evolves and the atom begins to move away from
its initial location, Fs(k,t) decreases monotonically.

At high temperatures, the decay is describable by a single
relaxation time characteristic of Debye exponential relaxation
in an equilibrium liquid (Fig. 7). The time at which the scat-
tering function decays to its asymptotic limit of zero is �2 ps
for all species found from computing Eqn. 6 at the peak in the
static partial structure factor for each atom. Otherwise, if Fs(k,t)
was computed for the same kmax for all the species, such as
2.64 Å	1, the fast-moving oxygen and calcium would decay to
zero a factor of three or so faster than slower-moving aluminum
and silicon. The slow relaxation at temperatures near and below
the glass transition temperature of 2800 K is of a stretched
exponential form. The behavior of Fs(k,t) at long times is
critical to theories of structural relaxation and is discussed
below. First, it is useful to introduce a statistical parameter that
serves as a measure of the importance of the subdiffusive
regime prominently displayed in Figure 1.

3.4. Cumulant Expansion and the First Nongaussian Parameter

A truncated cumulant expansion for the scattering function
in powers of k2 can be written (Rahman et al., 1962)

Fs
�
��k,t� � exp
 �

1

6
k2R�
��t� �

1

72
k4�R�
��t��2 A�
��t� � O�k6��

(8)

with

A�
��t� �
3

5


�ri
(t)	ri
(0)�4�
[R
(t)]2 	 1. (9)

A
(t) is the first nongaussian parameter of the cumulant expan-
sion, R(
)(t) is the mean-square displacement (MSD) of species

 (

{Ca, Al, Si, O}), and the numerator of Eqn. 9 is the fourth
moment of the displacement (mean quartic displacement). The
point of performing the cumulant expansion is that the scatter-
ing function is naturally broken up into its gaussian and non-
gaussian parts. The gaussian part is associated with Debye
exponential relaxation and is consistent with “normal” diffu-
sion determined from classical hydrodynamics, giving the well-
known relation MSD �6 Dt. For an equilibrium liquid, the first
nongaussian term in the cumulant expansion decays to zero
after passing through a maximum at a time that increases as
temperature decreases. For example, at 4976 K, AO(t) maxi-
mizes at t � 0.5 ps, whereas AO(t) attains a maximum at �3 ps
at 3086 K (Fig. 9). In equilibrium liquids, atoms explore all

Fig. 6. Partial static structure factor S

(k) vs. wave vector at temperatures spanning the range of the MD simulations
(1871, 2670, 3475, and 4976 K). Curves are offset vertically for clarity and the vertical lines indicate kmax. (a) SCaCa(k). (b)
SAlAl(k). (c) SSiSi(k). (d) SOO(k). The large amplitude peak at 2.64 Å	1 corresponds to the first peak in the oxygen–oxygen
pair correlation maximum at approximately 2.7 Å.
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parts of the phase space on experimental timescales and ergod-
icity is obeyed. In contrast, in structurally arrested CaAl2Si2O8,
there is a significant component of nongaussian behavior to the
decay of the scattering function. This is noted in Figure 7 at
temperatures T � Tg (e.g., at T � 1707 K). Hiwatari et al.
(1991) (see also Odagaki et al., 1997) proposed that the asymp-
totic (t 3 �) behavior of A
(t) could be used as an order
parameter for the glass transition viewed as a second-order
thermodynamic transition (see discussion below).

In Figures 8 to 11, A
(t) is plotted vs. the logarithm of time
for all atoms at temperatures spanning the glass transition.
Collectively, Figures 8 to 11 demonstrate some important fea-
tures of relaxation dynamics reflected by the nongaussian pa-
rameter A
(t). For brevity, discussion is focused on the non-
gaussian parameter for oxygen (Fig. 9); Ca, Al, and Si show
similar behavior and are discussed later.

The behavior of AO(t) strongly depends on temperature. At
all temperatures, AO(t) initially increases at short times (t � 1
ps), reflecting vibration of oxygen around local positions. This
motion corresponds to the steep slope of �2 on the MSD
curves in Figure 1. At temperature well above Tg (e.g., 4976
K), the maximum value of AO(t) occurs, at times on the order

of 1 ps or less. The time at which maximum in AO(t) takes
place increases as temperature decreases. For example, at T �
3086 K, AO(t) attains its maximum value at �4 ps. At temper-
atures near the glass transition, the peak in the nongaussian
shifts to later times (t � 5 to 10 ps). Finally, for T � Tg, AO(t)
exhibits more complex behavior with local extrema and evi-
dently no tendency to decay to zero, at least on a 150-ps
timescale (e.g., at T � 2670 K; not shown in Figs. 8–11). The
extent of nongaussian behavior gauged by both the large mag-
nitude of AO(t) and its lack of unimodal behavior correlates
with the duration of the subdiffusion regime (the plateau re-
gion) noted in Figure 1. Although the discussion here focuses
on oxygen, Ca, Al and Si exhibit substantially the same behav-
ior (Figs. 8, 10, and 11).

The value of the nongaussian parameter for oxygen at 40 and
140 ps (two temperatures) is shown in Figure 12. At tempera-
tures greater than 3400 K, AO(t) � 0, and one can reasonably
extrapolate from comparison of the 40- and 140-ps simulations
that AO(t) � 0 in the limit t3 � for T � 2800 K. Below 2670
K, AO(t � 40 ps) varies systematically with temperature such
that the extent of nongaussian behavior increases as tempera-
ture decreases. Note that the more slowly cooled simulation

Fig. 7. Intermediate scattering function for (a) calcium, (b) aluminum, (c) silicon, and (d) oxygen vs. time computed at
kmax found from the maxima of S

(k) for temperatures: 1707, 2239, 2542, 2670, 2947, 3475, 4151, and 4976 K. At high
temperatures, the decay of Fs(k,t) is characterized by exponential relaxation with a single time constant. As temperature is
lowered, a single relaxation time no longer captures the decay of the scattering function. The appearance of temporal
heterogeneity in the relaxation of microscopic density fluctuations is a defining characteristic of the glass transition.
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(� � 70 K/ps) at 3086 K is barely distinguishable from the
simulation at T � 3150 K, quenched at the higher rate � � 700
K/ps. The quench rate is not a large factor influencing these
results (see Morgan and Spera, 2001, for further discussion of
MD quench rate effects). The open squares on the figure at T �
2670 and 3475 K show AO(t) at � 140 ps; these indicate that
40-ps data are not sufficient to define asymptotic values of AO(t
3 �), although the trend is clearly defined. To verify the
asymptotic behavior of AO(t), longer simulations must be car-
ried out.

Computed values for the oxygen-oxygen scattering function
were fit to the Kohlrausch-Williams-Watts (KWW) stretched
exponential function:

Fs
�
��k,t� � C exp � � �t/to�

��, (10)

where C, to, and � are fit parameters. In the hydrodynamic limit
(small k), the relaxation time to � tH � [DO k2]	1, where DO

is the temperature-dependent diffusion constant and � � C �
1. The wave vector length used to compute tH is the smallest
one consistent with the length (L) of the simulation box, kmin �
2�/L. Single exponential behavior (� � 1) with a hydrody-
namic timescale (tH) is expected for the equilibrium liquid for
which A
(t) vanishes in the limit t 3 �. Table 3 collects the
best-fit KWW values for oxygen on the basis of the MD

simulations, the hydrodynamic approximation to the relaxation
time, tH, and the ratio to/tH. Although somewhat noisy, the high
temperature results conform to the hydrodynamic expectation
for a liquid (i.e., to/tH � 1 and � �1). For T � 2800 K, to
increasingly deviates from tH and � values deviate from unity,
indicating non-Debye stretched exponential relaxation. In Fig-
ure 13, �’ s determined by the KWW fit (�KWW) and from the
MSD analysis of simulations in Table 2 (�D) are plotted vs.
reciprocal temperature normalized by Tg. Because the KWW fit
involves retrieval of three parameters simultaneously, it is
expected that the MSD-derived values are more accurate.

4. DISCUSSION

4.1. Theories of Viscosity: General Attributes

Many theories have been proposed to account for the dra-
matic increase in relaxation time and accompanying strong
variation in transport properties (e.g., shear viscosity and tracer
diffusivity) at the glass transition. Useful reviews of the theory
of viscosity and the glass transition include those by Fredrick-
son (1988), Angell (1988, 1991), Bottinga (1994), Bottinga et
al. (1995), Ediger (1996), Debenedetti (1996), and Kob (1999).
Here, discussion is restricted to three models of the glass
transition, with particular reference to the MD simulations
described above.

Fig. 8. Nongaussian parameter for calcium, ACa(t). See text for discussion
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Changes in the structure of amorphous CaAl2Si2O8 with
temperature in the deeply supercooled region appear insignif-
icant around Tg. (Fig. 6; see also Morgan and Spera, 2001). The
static structure factors for many other supercooled liquids like-
wise provide no evidence for a growing static length scale near
Tg. The glass transition is therefore a dynamic rather than static
structural transition. Indeed, the large increase in structural
relaxation time, reflected by large changes in shear viscosity
around Tg, is a universal feature of the glass transition common
to many different kinds of materials. The search for a growing
dynamic-length scale ties together many theories of the glass
transition and associated theories of viscosity. Before discuss-
ing the various theories in more detail, we present a general
picture. In a qualitative sense, all viscosity theories discussed in
detail below share (more or less) these features.

Supercooled liquids, by virtue of their high densities, place
strong frustration constraints on the dynamics of individual
atoms. As temperature decreases toward Tg, a tagged atom is
more likely to be trapped by neighbors (i.e., caged) because the
amplitude of thermodynamic fluctuations (e.g., internal energy
and kinetic energy) decrease as temperature decreases. Near Tg,
a caged particle may remain trapped for relatively long times.
Liberation of the imprisoned particle requires cooperative re-
arrangement of a number of atoms surrounding the tagged
particle because neighboring atoms making up the cage are
themselves caged and must move as well. In a multicomponent

network material such as CaAl2Si2O8, topological frustration is
enhanced by the presence of particles of different effective size
and charge. The volume over which cooperative motions must
occur to relax a cage presumably increases as the temperature
decreases. Long times are therefore required for cooperative
rearrangements involving large numbers of atoms.

The view of sluggish dynamics in three-dimensional Euclid-
ean space may be augmented by consideration of the dynamics
in 6N � 1 dimensional phase space. The “ topographic” view-
point espoused by Stillinger (1995) is particularly useful. In-
teraction between particles is described by a potential energy
function �(r1, r2, . . ., rN), which depends on the location ri of
each particle in the system. An apt geological analogy is a
“ topographic” map showing the “elevation” � at “ location” R§
(r1, r2, . . ., rN) in the 3N-dimensional configuration space of
the N particle system. Potential energy basins correspond to
mechanically stable arrangements of the N particles, with van-
ishing force on every particle. Small displacements from this
arrangement give rise to restoring forces that return the system
to its equilibrium state. It is conjectured that basin minima have
a substantial variation in depth and may be arranged in a
geometrically complex pattern throughout configuration space.
The transition from Debye exponential to stretched exponential
relaxation, which from the MD simulations takes place around
2800 K at 1 GPa for CaAl2Si2O8, can be interpreted as follows.
As temperature declines toward Tg, R(t) enters an increasingly

Fig. 9. Nongaussian parameter for oxygen, AO(t). See text for discussion
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rugged and heterogeneous portion of configuration space as it
seeks out ever deepening �-scape minima. The lower the
temperature, the rarer and more widely spaced the megabasins
become. Escape from one deep megabasin to another requires
many cooperative elementary steps, the integrated sum of
which are characterized by large Arrhenian activation energy.
However, the elementary transition processes connecting con-
tiguous small basins requires only local rearrangements of
small numbers of particles exhibiting Arrhenian-Debye simple
relaxation. With this general background in mind, different
models of the glass transition are now examined in the context
of the MD simulations.

4.2. Configurational Entropy Model

A phenomenological model for the glass transition was pro-
posed over 35 yr ago by Adam and Gibbs (1965). Generally
referred to as the AGSC model, critical elements derive from
the earlier work of Kauzmann (1948), Gibbs (1956), and Gibbs
and DiMarzio (1958) (see also Goldstein, 1969, 1976). In the
AGSC theory, the temperature-dependent relaxation time for a
viscous material is determined from the probabilities for coop-
erative rearrangements to take place. Transition probabilities
are evaluated by defining a cooperatively rearranging region
(CRR) as a sample subsystem that, upon sufficient fluctuation
in enthalpy, can rearrange into another configuration indepen-

dent of the environment. The number of atoms in a CRR is
taken as z, and among all subsystems, the fraction of sub-
systems in a state permitting rearrangements (transitions) is
� � exp [	z��/kT], where �� is the chemical potential
hindering the cooperative rearrangement per atom with �� �
0. The cooperative transition probability is proportional to �
and may be written P(T) � A exp [	z��/kT], where A is
weakly temperature dependent and assumed constant in AGSC.
The average transition probability Pav(T) is determined by
summing over all values of P(T), corresponding to different z
at fixed temperature and pressure. If the assumption is made
that the overwhelming majority of transitions take place in
regions whose size differs negligibly from z*, defined as the
lower limit of the size of CRRs that have nonvanishing transi-
tion probabilities, then the average transition probability is:

Pav�T� � A exp� � z*��

kT � . (11)

Expression 11 implies that the overwhelming number of tran-
sitions take place in regions having the smallest possible size,
z*. To complete the analysis, it is necessary to evaluate the
temperature dependence of the z*, the lower limit on CRR with
nonzero transition probabilities. Arguments made by Adam and
Gibbs (1965) enabled an estimate of z* in terms of the molar

Fig. 10. Nongaussian parameter for aluminum, AAl(t). See text for discussion.
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configurational entropy Sconf of the macroscopic sample to be
made. They posited that

z* �
NAs*c
Sconf

(12)

where sc
* is the critical configurational entropy of the minimum-

sized CRR consisting of z* atoms and NA is Avogadro’ s
number. By combining Eqns. 11 and 12 and assuming sc

* to be
constant, the average transition probability becomes

Pav � A exp� � B

TSconf�T�� (13)

where A and B are temperature-independent constants. Because
the average transition probability is inversely proportional to
the structural relaxation time and because the viscosity is
directly proportional to the structural relaxation time, the shear
viscosity assumes the form

� � Ae exp� Be

TSconf�T�� (14)

where, again, Ae and Be are temperature-independent con-
stants.

By these rough statistical mechanical arguments, the relax-
ation characteristics of glass-forming liquids in AGSC are
found to be related to macroscopic thermodynamic properties,

notably the configurational entropy and its temperature deriv-
ative, the isobaric heat capacity. The dramatic increase in
viscosity as Tg is approached is therefore related to the differ-
ence in entropy between (metastable) supercooled liquid and
crystalline solid as temperature decreases in the deeply super-
cooled region. This difference arises solely as a result of
configurational differences between supercooled liquid and its
corresponding crystalline form. The entropy difference be-
tween supercooled liquid and crystalline solid decreases as
temperature drops and is extrapolated to go to zero at a tem-
perature called the Kauzmann temperature, TK, where, in
AGSC, a second-order thermodynamic transition is postulated
to occur. The so-called Kauzmann paradox arises because
extrapolation of the liquid and crystal entropy curves toward
absolute zero leads to the disturbingly unphysical situation of
negative entropy for supercooled liquid, a violation of the third
law of thermodynamics. By allowing for a second-order ther-
modynamic phase transition at TK, the paradox is sidestepped.

Calorimetric data for a number of silicate substances shows
that the practical laboratory glass transition temperature (asso-
ciated with a characteristic relaxation time of �100 s) usually
lies 30 to 50 K above TK (Richet, 1984; Richet and Bottinga,
1995). In AGSC model, the small number of possible CRRs
available to the system around the calorimetric glass transition
is measured by the smallness of the molar configurational
entropy (i.e., the difference in entropy of supercooled liquid

Fig. 11. Nongaussian parameter for silicon, ASi(t). See text for discussion.
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and crystal) of supercooled liquid around Tg. At TK, the ex-
trapolated entropy goes to zero and the relaxation time and
viscosity diverges. In terms of configuration space, the idea is
that the system has fallen into a deep nondegenerate amorphous

potential energy minimum at TK, the temperature of an ideal
glass transition. In practice, the kinetic glass transition inter-
venes before a supercooled liquid can be cooled to TK.

Although AGSC theory is based on the idea of a CRR, the

Fig. 12. Nongaussian parameter for oxygen vs. temperature at 40 ps (solid dots) and 140 ps (open squares). In the limit
t 3 �, A
(t) 3 0 for T � Tg, whereas A
(t) 3 a finite positive value at T � Tg.

Table 3. Best-fit parameters to the KWW expression, the hydrodynamic approximation to the relaxation time, tH, the ratio to/tH, and the slope
obtained from the log-log plot of the MSD vs. time (as in Fig. 1), �D.

T
(K)

kmin

(Å	1) C �KWW to (ps)
tH

(ps) to/tH �D

1707 0.23661 0.99993 0.19507 3.2025 � 1013 22181 1.4438 � 109 0.17707
1871 0.23780 0.99743 0.79216 23050 7217.3 3.1937 0.31661
2013 0.23958 0.99773 0.60980 86822 5051.4 17.1877 0.35086
2239 0.23757 0.99614 0.83398 9006.6 3585.0 2.5123 0.37854
2320 0.23964 0.99665 0.92135 3377.3 2192.2 1.5406 0.49662
2542 0.23940 0.99743 0.67744 5600.0 1202.5 4.6570 0.55651
2670 0.23786 0.99706 0.81111 1647.9 1136.8 1.4496 0.68990
2868 0.23777 0.99963 0.72681 1227.6 571.49 2.1481 0.66516
2947 0.23607 0.99471 0.98502 482.2 441.61 1.0919 0.72774
3086 0.23662 1.0044 0.65611 1166.3 393.15 2.9666 0.70388
3150 0.23661 0.99747 0.92784 260.14 246.85 1.0538 0.80878
3475 0.23637 0.98631 0.99838 160.43 152.47 1.0522 0.90347
3481 0.23661 0.99862 0.91667 139.73 132.21 1.0569 0.86056
3983 0.23561 1.0012 0.95591 73.694 68.968 1.0685 0.94540
4151 0.23661 0.98297 1.10600 52.645 57.379 0.9175 0.92938
4500 0.23661 0.98643 1.08930 39.17 41.705 0.9392 0.94989
4976 0.23137 0.98314 1.08280 33.949 31.942 1.0628 0.96912
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theory itself does not provide a means for calculating the size
of such a region until the excess entropy per atom of the
minimum-sized CRR is specified. There is no way to determine
this from the AGSC model self-consistently without making
additional guesses. As an extreme limit, the entropy of the
smallest region capable of undergoing a rearrangement is sc

* �
k ln 2, because an absolute minimum of two complexions must
be available for a rearrangement to take place. Adopting this
value, �� and z* may be calculated by means of experimental
data. The value for the chemical potential so computed from
laboratory calorimetric data is much larger than is physically
plausible for CaAl2Si2O8. In addition, the computed value of z*

is less than one, which is clearly devoid of physical meaning.
Other examples of materials for which the AGSC theory breaks
down are cited by Laughlin and Uhlmann (1972). This is not
surprising in light of the approximations involved in deriving
the theory. Although the AGSC hypothesis—especially the
idea of the critical role played by cooperative motion—remains
a powerful concept that serves the purpose of providing a
connection between thermodynamic and viscometric proper-
ties, AGSC theory provides little quantitative insight into the
microscopic dynamics of relaxation despite its statistical me-
chanical origin.

Despite its transparent inadequacies, AGSC theory does
serve to approximately correlate calorimetric properties with
transport properties for some liquids reasonably well. Richet
(1984) and Richet and Bottinga (1995) have demonstrated that
macroscopic viscosity–temperature data for liquid CaAl2Si2O8

is consistent with the laboratory calorimetric data and AGSC
predictions. The configurational entropy in Eqn. 14 is given by

Sconf�T� � Sconf�Tg� � 	
Tg

T �Cp conf

T
dT. (15)

The configurational entropy of glassy CaAl2Si2O8 at Tg is
identical its residual (0 K) entropy. The configurational isobaric
heat capacity is closely approximated by the heat capacity
difference between supercooled liquid and the harmonic solid
Dulong and Petit limit of 3R/g-atom K. For a material such as
silica with a nearly constant value of the configurational en-
tropy (i.e., �Cp � 0), an Arrhenian relation is recovered from
Eqns. 14 and 15 because Sconf(T) � Sconf(Tg) is a constant and
Eqn. 14 reduces to the usual Arrhenian form with the identifi-
cation Ea � RBe/Sconf(Tg). In contrast, melts with large
changes in the isobaric heat capacity at Tg (such as
CaAl2Si2O8) exhibit significant curvature in log � 	 1/T co-

Fig. 13. Comparison of the stretched exponent power-law index �KWW computed from fit of scattering function to KWW
form (Eqn. 10 and Table 3) to the slope, �D, obtained from a linear fit of the logarithm of the MSD vs. the logarithm of
time for the simulations in Table 2.
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ordinates. The vanishing of the extrapolated entropy difference
at TK is conceptually linked to the empirical Tamman-Vogel-
Fulcher expression for the shear viscosity given by ln � �
B/(T 	 To), where B and To are constants; evidently, the
viscosity diverges asymptotically as T 3 To. To may be iden-
tified with TK, provided a hyperbolic expression for the tem-
perature-dependent liquid heat capacity is assumed in comput-
ing the configurational entropy (i.e., �Cp � 1/T). Although
some silicate liquids, especially those rich in titania or ferric
oxide (e.g., Na2TiSi2O5), do exhibit �Cp � 1/T behavior (see
Tangeman and Lange, 1998), this form is not universal. Molten
CaAl2Si2O8, CaMgSi2O6, NaAlSi3O8, and many natural com-
positions (e.g., rhyolite and dacite) exhibit linear behavior of
�Cp vs. T. For especially strong network fluids such as SiO2,
the melt isobaric heat capacity is essentially constant.

In summary, the presence of a second-order thermodynamic
phase transition underlying the glass transition is the essential
idea of the AGSC hypothesis. The AGSC model is limited in
that it provides no information on the size or number of CRRs
because the configurational entropy of the critically sized CRR
is not specified, except as a formal lower limit that provides, in
practice, no useful insight at the microscopic level. A further
problematic aspect of the theory is the validity of extrapolation
of the supercooled liquid isobaric heat capacity in the temper-
ature range TK � T � Tg. That is, one cannot measure the
configurational entropy of the supercooled liquid near TK be-
cause the laboratory glass transition intervenes at T � Tg � TK.
Although the model demands knowledge of the heat capacity
around TK, this temperature interval is experimentally inacces-
sible, and one must be content with an extrapolation that cannot
physically be tested.

4.3. STDM

Odagaki (1988) and Odagaki with coworkers (see also Oda-
gaki and Hiwatari, 1990a,b, 1991; Hiwatari et al., 1991; Miya-
gawa et al., 1991; Odagaki et al., 1994) developed a hybrid
thermodynamic–statistical model, STDM, for the glass transi-
tion. In STDM, the vibrational and hopping motions are sepa-
rated and identified with the fast � relaxation and slow 

relaxation, respectively. The motion associated with vibration
in a local � basin in the �-scape is irrelevant with respect to
transport properties around Tg. In contrast, the motion associ-
ated with the 
 relaxation (transitions between megabasins in
the �-scape) is a nontrapped jump motion characterized by a
waiting time distribution for the elementary cooperative relax-
ation process. In this view, the singular behavior of the ad hoc
jump rate distribution function near zero jump rate is respon-
sible for the glass transition. Below Tg, anomalous diffusion
takes place such that as t 3 �, MSD � t� with � � 1. The
jump rate follows a power law with exponent �, where � is a
thermodynamic dimensionless parameter related to the Kauz-
mann entropy crisis. The jump waiting time distribution deter-
mines the physical properties of the material during slow 

relaxation. In particular, the diffusion constant is proportional
to the reciprocal of the mean waiting time defined � tw � � �o

(� � 1)/�, where �o is an “attempt” rate (vibration frequency)
of a trapped (caged) atom in its local � basin. At high temper-
ature, �o is of order 10	13 s	1. In STDM, � � 0 is identified
as the glass transition. For 	1 � � � 0, � � � � 1, whereas

for � � 0, � � 1. The parameter � is the scaling parameter of
the transition defined by Odagaki et al. (1997) in terms of the
product of the excess (configurational) entropy and the temper-
ature, the same product appearing in the AGSC theory. The
order parameter in STDM is defined

� �
TSconf�T� � TgSconf�Tg�

TgSconf�Tg�
. (16)

At T � TK, the configurational entropy vanishes, � � 	1, and
the jump waiting time distribution diverges according to
t	(��2). Recall that a second-order phase transition takes place
at T � TK. The system displays nonergodic behavior because
all of phase space cannot be explored, although relaxation still
occurs in restricted portions of phase space sampled during the
observation (or MD simulation) time. The glass transition in
STDM represents the transition from gaussian to nongaussian
atomic motion associated with the decay of microscopic den-
sity fluctuations. The nongaussian parameter in the long-time
limit is taken as an order parameter of the transition. In STDM,
the scattering function asymptotically decays toward zero for
all temperatures, whereas the nongaussian parameter A
(t) in
the limit t3 � and � begin to deviate from equilibrium liquid
values of A
(t � �) � 0 and �D � 1. Because the time required
for the displacement associated with stochastic jump motion to
become comparable to “cage drift” gets longer and longer as
the glass transition is approached, so does the time t* at which
A
(t) takes its maximum value A* � A (t*). The product A*t*

therefore shows a sharp decrease as the transition is approached
from below. In Figure 14, log (A*t*) for Ca, O, Al, and Si is
plotted vs. reciprocal temperature scaled by Tg. For Tg/T less
than about unity, the relation log A*t* � a � b (Tg/T) holds for
all atoms with b � 3.7 and 3.6 for O and Ca and 3.2 and 2.6 for
Al and Si, respectively.

Further connections between the macroscopic (laboratory)
properties of CaAl2Si2O8 liquid and its underlying microscopic
dynamics may be found by explicitly computing the order
parameter � defined by Eqn. 16. From laboratory measure-
ments (Richet and Bottinga, 1984), for the residual third law of
entropy of glassy CaAl2Si2O8, S(Tg) � 36.8 � 4 J/mol K and
isobaric heat capacity data for liquid anorthite, Cp � 400.722 �
20.243 � 10	3T J/mol K; the order parameter � can be calcu-
lated setting the computer glass transition temperature to 2800
K. Because the isobaric heat capacity of CaAl2Si2O8 liquid is
nearly constant at high temperature, the necessary extrapolation
of laboratory data does not introduce appreciable error. An
example based on the nongaussian characteristics of oxygen is
shown in Figure 15. The macroscopic-order parameter of the
transition (� � 1), which is based on laboratory thermodynamic
data, is plotted vs. log [(A*t*)	1], a quantity computed from the
MD simulations. This quantity is a measure of the magnitude
and timescale characterizing nonexponential relaxation. Note
that the glass transition in CaAl2Si2O8 at � � 0 (T � Tg) is
identified with a break in slope.

In summary, STDM is a statistical model that links macro-
scopic thermodynamic information to a microscopic picture
involving cooperative, thermally activated hopping of atoms. A
limitation is the ad hoc nature of the waiting time distribution
that ultimately relates the nonexponential decay of microscopic
density fluctuations to the thermodynamic state through the
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order parameter �. The prediction MSD � t� of STDM only
approximately holds. An appealing aspect is that nongaussinity
in the decay of density fluctuations can be directly related to the
waiting time distribution through thermodynamic scaling pa-
rameter �.

4.4. Mode-Coupling Theories

Another theory of the glass transition is the MCT developed
�15 yr ago (Bengtzelius et al., 1984; Leutheusser, 1984; see
also Debenedetti, 1996 for a review). MCT exploits the idea of
a nonlinear feedback mechanism in which strongly coupled
microscopic density fluctuations lead to structural arrest and
diverging relaxation time at a critical temperature. In MCT,
structural arrest arises solely from a positive feedback such that
viscosity controls the shear relaxation time and hence viscosity
itself (Geszti, 1983). That is, the relaxation time � is decom-
posed into a vibrational and structural part (� � �str � �vib), and
structural relaxation is explicitly related to tracer diffusion and
hence the shear viscosity through the Einstein-Stokes relation.
MCT is a strictly dynamic theory; no singularity in thermody-
namic parameters is involved, as in AGSC and STDM. The
idealized version of MCT (iMCT) posits a dynamic transition
from ergodicity to nonergodicity at a critical temperature Tc �

Tg, with viscosity exhibiting power-law divergence near Tc

according to D	1 � � � (T 	 Tc)
	�. Above Tc, where

ergodicity is obeyed, all regions of phase space are accessible.
Below Tc, where structural arrest occurs, parts of phase space
remain inaccessible. A prediction of “ ideal” MCT is that at T �
Tc, the “self” part of the intermediate scattering function
(Fs(k,t)) decays to a finite, nonzero number called the noner-
godicity parameter in the limit t 3 �. The nonergodicity
parameter appears discontinuously at Tc. For T � Tc, iMCT
predicts that the scattering function decays to zero in two steps.
The first step is to a plateau (remaining there for some time),
thereafter decaying to zero as t3 �. The time range in which
the correlation function is close to the plateau is called the �

relaxation regime and the regime that begins at the onset of
deviation from the plateau is the 
 relaxation regime. For long
times, the decay of the correlation function is approximated by
the stretched exponential KWW function defined in Eqn. 10
above.

In the so-called extended version of MCT (eMCT), addi-
tional nonlinearities are accounted for in the differential equa-
tion for the time evolution of the scattering function. Retention
of these terms has the effect of smearing out the transition
region so that no divergence at Tc occurs. In eMCT, hopping

Fig. 14. Evidence of a gaussian to nongaussian transition for all species is noted in the logarithm of A*t* vs. Tg/T by sharp
decrease in slope at approximately Tg/T � 1. For the high-temperature interval, Tg/T � 1.2, slopes of 3.7 and 3.6 for O and
Ca. For Al and Si, the slopes are 3.2 and 2.6, respectively.
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motion is accounted for unlike iMCT where jump motion is
neglected. As already noted from study of the van Hove cor-
relation function (Figs. 2 to 5), hopping is indeed important in
CaAl2Si2O8. This is a clear limitation of iMCT in the descrip-
tion of thermally activated tracer diffusion in CaAl2Si2O8.

In Figure 16, the tracer diffusivity of oxygen computed from
the MD results is plotted vs. temperature. The solid curve is the
best-fit Arrhenian curve to diffusivity data (Morgan and Spera,
2001) for T � 3000 K and the dashed curve is the fit to the
MCT expression D � A (T 	 Tc)

�. Computed fit parameters
are: ln A � 	30.830, Tc � 2593 � 125 K and � � 1.53 �
0.14. Although the MCT expression correlates the data slightly
better than the Arrhenian fit, it may be argued that a three-
parameter fit should perform better than a two-parameter (Ar-
rhenian) fit. The value of the MCT critical temperature Tc �
2600 K is close to the computer glass transition estimate of Tg

(� 2800 K), which is perplexing because one expects Tc � Tg

even for the high numerical quench rate of this MD study. For
example, in the study of amorphous silica by Horbach and Kob
(1999), the MCT critical temperature is Tc � 3000 K whereas
the (computer) glass transition occurred at Tg � 2850 K. For
amorphous CaAl2Si2O8 the power-law exponent based on the
MD data of � � 1.53 is somewhat lower than the theoretical
prediction of Sjörgen (1980) for hard spheres of � � 2.368. On
the basis of measured viscosity and taking � � D	1, Angell

(1988) reported values 1.5 � � � 2.3 for the power-law
exponent for a number of liquids. The computed value for
CaAl2Si2O8 falls at the lower end of this range. For compari-
son, � � 2.05 for silica as determined from MD simulations by
Horbach et al. (1998) that use the potential of van Beest et al.
(1990).

In summary, MCT describes some aspects of the relaxation
dynamics of supercooled CaAl2Si2O8 reasonably well, at least
semiquantitatively, although Tc appears somewhat smaller than
expected. In eMCT, the coupling between density and momen-
tum fluctuations is included. These terms allow for thermally
activated hopping at T � Tc, thereby restoring ergodicity to
lower temperature, clearly an improvement upon iMCT. De-
tailed predictions of the eMCT theory remain to be worked out.
Although Tc is clearly not the glass transition, it does appear to
match the temperature at which significant nongaussian effects
become important.

5. CONCLUSIONS AND FUTURE DIRECTIONS

Because MD quench rates are many orders of magnitude
greater than laboratory rates, the computer glass transition
temperature lies above the calorimetric one. This is true for a
broad range of materials independent of the form of the inter-
action potential and is consistent with both the universality and

Fig. 15. Logarithm of inverse of A*t* for oxygen (purely a MD determined quantity) vs. � � 1 (a laboratory-determined
quantity), where � is defined by Eqn. 16 with thermodynamic parameters defined in the text. Note that � � 0 corresponds
to the glass transition (Tg) of CaAl2Si2O8.
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“kinetic” nature of the laboratory glass transition. Tg represents
the temperature at which the structural relaxation time of the
material is comparable to the timescale of experimental mea-
surement. It appears that MD simulations provide a valid view
of the glass transition, despite differences in the numerical
values for the computer and laboratory glass transition temper-
atures.

The MD simulations provide clear evidence for the cooper-
ative nature of thermally activated diffusion around the glass
transition. The small range in computed tracer diffusivity at a
given temperature and activation energy (170 to 190 kJ/mol)
for Ca, O, Si, and Al is consistent with cooperative dynamics.
The van Hove correlation functions reveal that oxygen and
calcium diffuse by hopping between nearest self-neighbor sites
at temperatures around Tg. Although not analyzed in detail,
there appear to be correlations between epochs of nongaussian
behavior in the decay of microscopic density fluctuations be-
tween all atoms, but especially oxygen and calcium, for exam-
ple. The mechanism of coupling between oxygen and Ca in-
volves the accessibility of jump sites controlled by relaxation of
the O-Si-Al network. The intermediate scattering function ex-
hibits stretched exponential behavior that is a reflection of the
distribution of atom waiting times at individual sites. When this
diffusion process is studied at a coarser scale, it leads to
MSD � t� with � � 1 (i.e., subdiffusion). At a given temper-
ature, the decay of the self-intermediate scattering function

goes to the hydrodynamic limit more rapidly the smaller the
magnitude of the wave vector. For a larger wave vector, the rate
of decay of Fs(k,t) becomes less exponential as higher moments
become important. This indicates that on a short-length scale,
motion of the atoms is nonrandom. This is especially marked
for Ca and O. The nongaussian component of the decay of the
intermediate scattering function, A
(t), exhibits increasingly
complex behavior as the temperature falls toward Tg from
above. All atoms exhibit this same qualitative behavior around
Tg.

Although each of the models for the glass transition explored
provides some insight into the glass transition, no single model
is consistent with all of the MD results. In AGSC, a second-
order phase transition is postulated to occur at the Kauzmann
temperature, TK � Tg, where the entropy of supercooled liquid
equals to the entropy of crystalline solid. In AGSC, the con-
figurational entropy of metastable liquid goes to zero at TK, and
the resultant material is called an ideal glass. In this view, there
is nothing fundamental about Tg. If a supercooled liquid could
be cooled sufficiently slowly, TK could be attained before
intervention of the laboratory glass transition. Although the
AGSC model enables one to estimate shear viscosity from
calorimetric data (sometimes accurately), it provides little
quantitative insight into the microscopic dynamics of the tran-
sition itself. STDM goes beyond AGSC in that it specifically
relates relaxation dynamics to a physical picture—one of the

Fig. 16. Comparison of Arrhenian and MCT expressions for temperature dependence of oxygen tracer diffusivity. Solid
curve is Arrhenian fit and dashed line is MCT fit to MD data for T � 3000 K (see text for details).
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stochastic jump motion of a trapped atom from a caged site by
cooperative motion of its neighbors, which are themselves
caged. In STDM, the idea of a second-order thermodynamic
transition at TK is retained by definition of an order parameter
of the transition. This order parameter, based on configurational
entropy, is explicitly related to the waiting time distribution of
caged particles. A power-law relationship is assumed such that
at TK the mean particle residence time diverges. MCT, on the
other hand, is a purely dynamic theory that captures the non-
exponential decay of density fluctuations in terms of a transi-
tion from ergodic to nonergodic behavior. It also specifies a
power-law dependence of viscosity and tracer diffusivity on
temperature that is consistent with the MD simulations at T �
Tg.

The great promise of MD simulation is that when sufficiently
large particle number and sufficiently long duration simulations
are performed, constraints for a truly microscopic theory of the
transition will emerge. For a simple Lennard-Jones fluid, this
approach has already proven enlightening (e.g., Poole et al.,
1998; Donati et al., 1999; Doliwa and Heuer, 1999; Kegel and
van Blaaderen, 2000; Ediger, 2000; Weeks et al., 2000). These
studies, taken collectively, suggest that relaxation occurs
through the motion of groups (mesoscale?) of relatively few,
cooperatively moving atoms that cluster or organize spatially in
three-dimensional (Euclidean) space. These CRRs may relax
independently from each other at different rates leading to
non-Debye relaxation. The precise relationship between this
“dynamic heterogeneity” and the CRR remains unclear. De-
tailed studies have not yet been extended to multicomponent
silicate melts of geochemical importance, although it is antic-
ipated that such studies will be completed in the future.
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