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Abstract

A thermodynamic model and equation of state (EOS) is developed from the molecular dynamics simulation experiments of
Spera et al. (2009) for CaAl2Si2O8 liquid over the temperature range 3500–6000 K and pressure interval 0–125 GPa. The mod-
el is constructed utilizing the isothermal Universal EOS of Vinet et al. (1986) combined with an expression for the
temperature-dependence of the internal energy derived from density functional theory (Rosenfeld and Tarazona, 1998). It
is demonstrated that this model is more successful at reproducing the data than the temperature-dependent Universal EOS
(Vinet et al., 1987) or the volume-explicit EOS of Ghiorso (2004a). Distinct parameterizations are required to model low
(<20 GPa) and high (>20 GPa) pressure regimes. This result is ascribed to the affect of liquid structure on macroscopic ther-
modynamic properties, specifically the interdependence of average cation-oxygen coordination number on the bulk modulus.
The thermodynamic transition between the high- and low-pressure parameterizations is modeled as second order, although
the nature of the transition is open to question and may well be first order or lambda-like in character.

Analysis of the thermodynamic model reveals a predicted region of liquid–liquid un-mixing at low-temperatures (<1624 K)
and pressures (<1.257 GPa). These pressure–temperature conditions are above the glass transition temperature but within the
metastable liquid region. They represent the highest temperatures yet suggested for liquid–liquid un-mixing in a silicate bulk
composition. A shock wave Hugoniot curve is calculated for comparison with the experimental data of Rigden et al. (1989)
and of Asimow and Ahrens (2008). The comparison suggests that the model developed in this paper underestimates the den-
sity of the liquid by roughly 10% at pressures greater than �20 GPa.
� 2009 Elsevier Ltd. All rights reserved.
1. INTRODUCTION

The objective of this paper is to demonstrate how the
molecular dynamics simulations reported in Spera et al.
(2009, hereafter Part I) may be utilized to develop a thermo-
dynamic model of CaAl2Si2O8-composition liquid. The
data set reported in Part I represents conditions at which
the internal energy (E) and the volume (V, or density, q)
of the liquid are known at a given temperature (T) and pres-
sure (P). In order to construct this data set, Molecular
Dynamics computations where performed utilizing the
0016-7037/$ - see front matter � 2009 Elsevier Ltd. All rights reserved.
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microcanonical ensemble to generate 72 state points along
isochors that cover the pressure range 0–125 GPa. Energies
were chosen to yield temperatures between 3500 and
6000 K at approximately 500 K intervals.

The exercise of calibrating an equation of state (EOS)
and thermodynamic model for CaAl2Si2O8 liquid over such
a broad temperature and pressure range highlights some
important considerations in modeling homogeneous mate-
rials that undergo significant changes in melt structure with
T and P. In minerals and other crystalline solids, structural
variation is often addressed by formulating a model with
parameters that characterize the internal structural state
of the material, and the equilibrium configuration is deter-
mined for specified T and P by computation of homoge-
neous equilibrium (Thompson, 1969, 1970). Often, the
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Fig. 1. Average nearest neighbor coordination number of oxygen
about silicon (Ave SiO½�n�) plotted against specific volume (and
density) for the 72 MD state points of Part I. The solid line is a
linear regression of data from the high-pressure isochors, while the
dashed line represents the same through the low-pressure data.
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structural variation is constrained by crystallographic sym-
metry and the formalism of Landau’s theory (Tolédano and
Tolédano, 1987) is applicable. In amorphous materials,
polymer models (Flory, 1988) and associated solution
theory are often utilized to accommodate the energetic con-
sequences of temperature-, pressure- and compositionally-
dependent structural variation. An example of the latter
theory applied to molten SiO2 is given in Ghiorso
(2004a). In aqueous solutions, accounting for structural
variability is intrinsic to the very successful method of
describing their thermodynamic properties in terms of ions
and associated ionic complexes. In all these cases, structural
variation with T and P is important because such variation
affects the entropy of the material, and one cannot hope to
model the energy of a system at finite temperature with any
veracity in the absence of a physical description of the sys-
tem’s entropy.

The molecular dynamics simulations reported in Part I
demonstrate that CaAl2Si2O8 liquid undergoes significant
changes in melt structure as a function of pressure. This
is illustrated in Figs. 5 and 7 of Part I, which summarize
data on the dependence of oxygen coordination number
(CN) with pressure along a nominal 3500 and 6000 K iso-
therm, respectively. For example, in Fig. 5 (Part I) the frac-
tion of Si at 3500 K in nearest neighbor coordination with
four oxygen atoms (SiO[4])1, five oxygen atoms (SiO[5]), etc.,
are plotted along with the average CN of Si as a function of
pressure. The trends in SiO[n] are very similar to those
found for AlO[n] and reflect a regular and smooth increase
in the radius ratio of the cation with respect to oxygen in-
duced by increasing pressure. To first order, the changes
in average CN of Si and Al are a good measure of the mac-

roscopic volume of the liquid. This relation is shown in
Fig. 1, where average coordination number of O about Si
(SiO½�n�) computed from 72 simulations performed along
12 isochors is plotted as a function of the specific volume.
Fig. 1 establishes that there is a relation between the struc-
ture of CaAl2Si2O8 liquid and the volumetric properties of
the system. Closer inspection indicates some important sec-
ond order features of this relation. The first six low-specific
volume (high-pressure) isochors define a linear trend that is
distinct from another that characterizes the high-specific
volume (low-pressure) simulations. While the underlying
cause for these two distinct trends may lie in the observa-
tion that the low-pressure group is dominated by (Si,Al)O[4]

and (Si,Al)O[5] and the high-pressure group by (Si,Al)O[5]

and (Si,Al)O[6+] (Figs. 5 and 7, Part I), there is a more
abrupt shift in CN of Ca and a marked change in the coor-
dination number of O about O that better differentiates the
two groupings. The local environment of Ca and O reveals
that a significant reorganization of the structure of CaAl2-

Si2O8 liquid takes place across this interval, and whether
the consequence of this structural change is a phase transi-
tion of pseudo-first order character or a displacive transi-
tion that spans several GPa, the inescapable conclusion is
that the thermodynamic properties of the liquid on either
1 We adopt the following notation, AB[n], which denotes that
there are n atoms of “B” in nearest neighbor coordination with
atom “A”.
side of the interval need not be related, any more than
the properties of one polymorph of a mineral need be re-
lated to another. In particular, these observations suggest
that a single EOS (or thermodynamic model) parameteriza-
tion will be insufficient to describe the data set of Part I. We
expect, for example, that quite different values of the bulk
modulus (K) will be required to account for the potentially
different compression mechanisms in the low- and high-
pressure regimes and that this will also be true for the ther-
mal expansivity (a) and the Grüneisen parameter (c).
Experimental work on the solution of Ar in molten CaAl2-

Si2O8 at pressure (Bouhifd and Jephcoat, 2006; Bouhifd
et al., 2008) demonstrates that there is a rapid change in sol-
ubility mechanism in the range 15–20 GPa, which lends
support to our inference of phase transition like behavior
in the liquid.

We begin this paper by analyzing the observations of
Part I in terms of the Universal EOS of Vinet et al. (1986,
1987, 1989) and then compare these solutions to those ob-
tained using the EOS of Ghiorso (2004a). Finally, we devel-
op an EOS and complete thermodynamic model for
CaAl2Si2O8 liquid using the potential energy approxima-
tion of Rosenfeld and Tarazona (1998) in combination with
the temperature independent version of the Universal EOS
(Vinet et al., 1986). This combined model is used in the last
section of the paper to examine the liquid–liquid un-mixing
in molten CaAl2Si2O8 and to compute a theoretical shock
Hugoniot.
2. PRELIMINARY EOS ANALYSIS

The Universal EOS of Vinet et al. (1986) is a pressure ex-
plicit equation of state that has been found to be reliable for
a wide variety of compounds to extreme values of compres-
sion. The Universal EOS has a simple form,

P ¼ 3Kð1� xÞegð1�xÞ

x2
ð1Þ
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where g ¼ 3
2
ðK 0 � 1Þ and x ¼ ð V

V 0
Þ1=3. The three parameters

of the EOS, V 0, K, and K 0, are the zero pressure volume,
isothermal bulk modulus, and the pressure derivative of
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Fig. 2. Model isotherms and data residuals for fits to the Universal
EOS (Vinet et al., 1986). Parameters are provided in Table 1. In the
upper panel, the uncertainty in pressure for the MD data points is
smaller than the size of the symbol. In the lower panel, the ordinate
refers to the difference between the MD value (Part I) and the
model value, and the brackets give the uncertainty estimated from
the molecular dynamics simulation.

Table 1
Universal EOS fits to isotherms.

Isotherm (K) Sum-of-squares V0 K K’

3500-low P 0.06 0.451601 7.405233 8.554065
3500-high P 3.62 0.367461 47.40261 7.210359
3500 32.28 0.433122 9.926412 9.87999

4000-low P 0.062 0.449172 10.1497 7.663792
4000-high P 1.57 0.380513 39.30513 7.327294
4000 16.09 0.440295 10.40354 9.470172

4500-low P 0.03 0.45673 9.560292 8.567842
4500-high P 0.86 0.40297 26.79937 7.802924
4500 4.78 0.452248 9.819279 9.265064

5000-low P 0.03 0.46294 10.00496 8.524746
5000-high P 0.696 0.408396 27.90265 7.480413
5000 3.82 0.457251 10.77817 8.849689

5500-low P 0.016 0.461078 14.11587 6.936002
5500-high P 0.305 0.415506 27.34356 7.340795
5500 3.04 0.466965 10.51567 8.677041

6000-low P 0.05 0.480659 9.740531 8.341857
6000-high P 0.194 0.433676 21.53198 7.568282
6000 1.41 0.476429 10.18755 8.553595
the isothermal bulk modulus, for some reference tempera-
ture (T r). While the Universal EOS does not incorporate ex-
plicit provision for pressure-induced variation in the
structure of the material, it offers a convenient parameteri-
zation and a starting point for examining the data set of
Part I.

After organizing the simulation data of Part I by iso-
therm, we fitted them to the Universal EOS. Resulting
parameter values are reported in Table 1. Model curves
and residuals are displayed in Fig. 2. As anticipated, the
Universal EOS fails to capture the second order features
of qðP Þ for this data set. Residuals form a distinct trend
at low-pressure and are larger than the reported uncertainty
at higher pressures (Fig. 2). This non-random pattern to
model residuals can be eradicated by fitting the high- and
low-pressure isochors separately, partitioning the data set
of Part I according to a low-P regime dominated by
CaO[7] and OO[10–12] (Figs. 5 and 7, Part I) and a high-P re-
gime characterized by CaO[10–11] and OO[14–15]. Resulting
fits are reported in Table 1. Examining the sum-of-squares
of residuals (SSres) of these fits and those for each complete
isotherm, it is apparent that the statistical improvement in
quality of the fit is significant. In addition, this exercise
demonstrates that the low- and high-pressure regimes are
modeled by different average isothermal bulk moduli, with
a value of 10.16 ± 2.18 GPa extracted for the low-P MD
data and a value of 31.72 ± 9.64 for the high-P data. The
former value is in excellent agreement with the recent exper-
imental study of Ai and Lange (2008).
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Fig. 3. Parameters of the Universal EOS of Vinet et al. (1986)
calibrated from subsets of the data of Part I and plotted against
temperature. Solid lines connect parameter values extracted from
data along complete isotherms. The dashed lines show variation in
parameters extracted from low-pressure isotherms, while the dotted
lines connect high-pressure isotherm parameterizations. Numbers
are from Table 1.
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The Universal EOS parameter values for each isotherm
are plotted in Fig. 3. The displayed trends suggest that it
might be possible to construct a P ðV ; T Þ equation by mak-
ing the V 0, K, and K 0 parameters functions of T. This ap-
proach is somewhat empirical, and Vinet et al. (1987)
suggest that a better and more thermodynamically consis-
tent formulation would be to include a “thermal pressure”

correction to Eq. (1) as

P ¼ 3Kð1� xÞegð1�xÞ

x2
þ aKðT � T rÞ ð2Þ

where a is the isobaric coefficient of thermal expansion at
the reference temperature and pressure, which Vinet et al.
(1987) suggest be modeled as a constant. Attempts to fit
the entire Part I data set or just the low- and high-P subsets
with an EOS of the form of Eq. (2) fail because the fits do
not capture the correct spacing of the isotherms at elevated
pressure. This failure suggests that Eq. (2) does not ade-
quately model the high-pressure thermal coefficient of
expansion for this fluid.

As an alternative to expressing the Vinet EOS parame-
ters of Table 1 as empirical functions of temperature, it is
worth exploring other EOS formulations that are capable
of reproducing the data set of Part I and for which the T-
dependence has a more physical basis. One such EOS is that
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Fig. 4. Modeled densities computed from the volume-explicit EOS of G
simulation data from Part I. (a) Dashed curves calculated from
parameterization. See Table 2. Uncertainty in MD pressure estimates
pressure regime. MD one sigma uncertainties in pressure estimates are fr
uncertainties in MD pressure estimates are approximately the size of the
of Ghiorso (2004a), which is volume-explicit and has the
form

V ¼
V 0;T þ ðV 1;T þ V 0;T aÞðP � P rÞ þ V 2

2
þ V 1;T aþ V 0;T b

� �
ðP � P rÞ2

1þ aðP � P rÞ þ bðP � P rÞ2
ð3Þ

This expression is based on a Taylor series expansion of the
volume

V ¼ V 0;T þ V 1;T ðP � P rÞ þ
V 2

2
ðP � P rÞ2 þ

V 3

6
ðP � P rÞ3

þ V 4

24
ðP � P rÞ4 ð4Þ

where the coefficients V 0;T , V 1;T , V 2, V 3, and V 4 are the zer-
oth through fourth order pressure derivatives of the volume
at the reference pressure (P r). Eq. (3) is obtained from Eq.
(4) by a Padé transformation that generates the identities

a ¼
V 2V 3 � 1

2
V 1;T V 4

2V 1;T V 3 � 3V 2
2

ð5Þ

b ¼
1
4
V 2V 4 � 1

3
V 2

3

2V 1;T V 3 � 3V 2
2

ð6Þ

The parameters V 2, a, and b in Eq. (3) are taken to be tem-
perature independent. The temperature-dependence of V 0;T

is given by
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V 0;T ¼ V 0;T r e
aðT�T rÞ ð7Þ

where a is a constant parameter corresponding to the iso-
baric thermal coefficient of expansion. V 1;T is given by
(Ghiorso and Kress, 2004)

V 1;T ¼ �V 2
0;T

1

M cT r þ dc
dT ðT � T rÞ

� �2
þ Ta2

CP

( )
ð8Þ

where CP is the isobaric heat capacity, M is the system
mass, cT r is the sound speed in the material at T r, and dc

dT
is its temperature derivative. The EOS of Eq. (3) was con-
structed so that the temperature-dependence of its parame-
ters [Eqs. (7) and (8)] could be inferred from measurable
quantities. It has been applied successfully to experimental
data on a wide variety of silicate liquids (Ghiorso, 2004b)
and to molecular dynamics simulation data on molten
SiO2 (Ghiorso, 2004a).

Parameterizations of the EOS of Eq. (3) to the data from
Part I are displayed in Fig. 4 with coefficients provided in
Table 2. Taking the lead from the Universal EOS analysis,
the data set is partitioned into low- and high-pressure sub-
sets and each is fitted separately. The model recovers each
subset of the data set to within the reported fluctuations
in P that are an intrinsic part of the Molecular Dynamics
simulations. Further evaluation of the applicability of
Eq. (3) requires examination of higher order volume deriv-
atives and comparison of modeled values of E with those of
Part I.

The internal energy may be computed from Eq. (3) using
the thermodynamic identity, E ¼ H � PV , where H is the
enthalpy of the liquid, via

E ¼ H T r ;P r þ
Z T

T r

CP dT þ
Z P

P r

V � T
@V
@T

� �
dP � PV ð9Þ

The parameters of Table 2 permit the evaluation of the
last three terms of Eq. (9). Internally consistent values of
the constant H T r ;P r can be obtained from the MD results
of Part I and are found to be �153.073 and �152.918 kJ/
g, respectively, for the low- and high-pressure data sets.
Recovery of the internal energy is demonstrated in Fig. 5.
The analysis captures the essential features of the tempera-
ture and pressure dependence of the internal energy array,
but residuals are larger than the estimates of uncertainty,
which are in turn smaller than the plotted symbols (see
figure legend).
Table 2
Parameter values for the EOS of Ghiorso (2004a).

Parameter Low-P calibration High-P calibration

V 0;T r (cm3/g) 0.410148 0.325480
a (K�1) 3.23905 � 10�5 3.00631 � 10�5

cT r (cm/s) 2384.39 6420.66
dc
dT (cm/s K) 0.0714161 0.0567792
CP (J/g K)a 1.52872 1.52872
V2 (cm3/g GPa2) 0.0110032 �1.30792 � 10�5

a (GPa�1) 0.851845 2.62529
b (GPa�2) 0.118737 0.0455112

T r = 5000 K.
a Computed from the model of Lange and Navrotsky (1992).
In order to further investigate the advantages and dis-
advantages of this solution it is instructive to evaluate
higher-order volumetric/temperature-derivative properties
from the MD simulation data and compare these against
model predictions. We choose to examine ð@P

@T ÞV —(=aK)
the “thermal pressure coefficient,” CV —the isochoric heat
capacity [� ð@E

@T ÞV ], K, a, and c—the thermal Grüneisen

parameter. ð@P
@T ÞV may be obtained from the MD simula-

tion data of Part I by computing finite difference deriva-
tives between ( P, T)-state points determined along an
isochore. Values are plotted in Fig. 6a along with uncer-
tainty estimates obtained by formal error propagation
(Bevington, 1969) on the assumption of uncorrelated er-
rors in T and P. Similarly, finite difference derivatives of
( E, T)-state points along an isochore yield estimates of
CV , and values are plotted in Fig. 6c. Given that
K � �V =ð@V

@P ÞT , K may be estimated by computing finite
difference derivatives of volume with respect to pressure
between state points along an isotherm. These estimates
and their associated uncertainties are plotted in Fig. 6b.
Estimates of the remaining two quantities are obtained
from their formal definitions: a ¼ ð@P

@T ÞV =K and c ¼
aKV =CV . Values and their associated uncertainties are
plotted in Fig. 6d and e.

Model predictions of the thermal pressure coefficient
and isochoric heat capacity agree well with MD estimates
(Fig. 6a and b), although there is some mis-prediction of
both quantities for the densest isochore. Prediction fails,
however, for the bulk modulus at intermediate to elevated
pressures (Fig. 6c). This misfit is a reflection of the fact that
the slope of the model high-P isotherms plotted in Fig. 4a is
too shallow for P � 25 GPa and increasingly too steep for
P > 60 GPa. The inability to successfully model the high-
pressure bulk modulus carries over expectedly to the ther-
mal coefficient of expansion (Fig. 6d), but is not reflected
in the Grüneisen parameter, as model residuals in both a
and CV tend to cancel each other.
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simulation data from Part I. Dashed curves calculated from low-
pressure parameterization, solid curves from high-pressure param-
eterization. Symbols are larger than estimated uncertainty in
pressure.



0 25 50 75 100 125 0 25 50 75 100 125

0 25 50 75 100 1250 25 50 75 100 125

0 25 50 75 100 125

P (GPa)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007
(∂

P
/∂

T
) V

 (
G

P
a/

K
)

P (GPa)

1.1

1.2

1.3

1.4

1.5

1.6

1.7

C
v 

(J
/g

m
-K

)

P (GPa)

0

100

200

300

400

500

K
 (

G
P

a)

P (GPa)

0

1e-05

2e-05

3e-05

4e-05

5e-05

α 
(1

/K
)

P (GPa)

0

0.2

0.4

0.6

0.8

1

γ

a b

c d

e

Fig. 6. Modeled derivative properties computed from the volume-explicit EOS of Ghiorso (2004a) and the parameters of Table 2 compared to
MD simulation data from Part I. Dashed curves calculated from low-pressure parameterization, solid curves from high-pressure
parameterization. Uncertainty in MD derived quantities are shown as ±1r. (a) Thermal pressure coefficient, equivalent to aK. (b) Isochoric
heat capacity. (c) Bulk modulus. (d) Isobaric thermal coefficient of expansion. (e) Thermal Grüneisen coefficient.
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In summary, the EOS embodied in Eq. (3) does an
acceptable job in modeling E–V–P–T relations for the Part
I data set, but it fails to capture important higher-order
nuances of the data array. Furthermore, its successes de-
pend on quite different parameterizations for the low- and
high-P segments of the data set, and while this is not a flaw,
it does bring to issue which branch of the model is applicable
in the intermediate pressure regime and the practical matter
of transitioning between model segments. In practice, one
could compute the Gibbs free energy of the low- and high-
P model liquids and find the locus of (P, T) points that
define a “phase transition” between the two. In this context,
however, inspection of Fig. 4a suggests that there will be a
finite volume change along this transition curve (the iso-
therms for the low- and high-P model curves do not cross)
and that implies a first order liquid–liquid phase transition.
Before adopting a model with this sort of physical ramifica-
tion it is important to establish that some less provocative
formulation might not yield a model that fits the data
equally well if not better.

Any thermodynamic model we formulate for CaAl2-

Si2O8 liquid must acknowledge the dependence of
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macroscopic bulk properties on microscopic structure (e.g.
Figs. 4–7 in Part I), but if a model could be formulated that
allows the transition between low- and high-P structural re-
gimes to be continuous, then such a model is clearly supe-
rior. In the next section, we develop such a model by
combining a pressure explicit EOS with an expression for
the internal energy derived from density functional theory.

3. PROPOSED EOS AND THERMODYNAMIC

MODEL

In a seminal paper, Rosenfeld and Tarazona (1998)
demonstrate that there is a general relation for the temper-
ature and volume dependence of the potential energy (U) of
dense classical fluids. The leading terms of this expression
are

UðV ; T Þ ¼ aðV Þ þ bðV ÞT 3=5 ð10Þ

where aðV Þ and bðV Þ are unrestricted functions of volume.
The MD simulations of Part I provide values of U com-
puted along 12 isochors, and these are plotted against cor-
responding values of T 3=5 in Fig. 7. Straight lines are fitted
to these data as indicated in the upper panel of the figure;
regression parameters and statistics are provided in Table
3. Residuals to these fits are plotted in the lower panel of
Fig. 7. Eq. (10) does an excellent job representing the
MD data for all but the two densest isochors. For these
cases, the residuals form a parabolic pattern, suggesting
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Fig. 7. Predicted trends and residuals for the model of Rosenfeld
and Tarazona (1998) applied to estimates of the potential energy
from Part I. Intercept and slope parameters as well as statistics
related to the linear fits to the data (displayed in the upper panel)
are reported in Table 3. Brackets indicate ±1r uncertainties.
perhaps the addition of a term involving T 6=5 to the model
equation. In further developing the thermodynamic analy-
sis in this paper, we will not pursue extension of Eq. (10)
to higher order terms. At worst, this approximation will
introduce an error �0.05% in the modeled energy.

The internal energy of the system is given by the identity
(Part I)

EðV ; T Þ ¼ UðV ; T Þ þ 3n
2

RT ð11Þ

where n is the number of atoms in the formula unit of
CaAl2Si2O8 (i.e. 13), R is the universal gas constant in units
of energy/g K. Substitution of Eq. (10) into Eq. (11) gives a
Rosenfeld–Tarazona compatible model expression for the
internal energy

EðV ; T Þ ¼ aðV Þ þ bðV ÞT 3=5 þ 3n
2

RT ð12Þ

Our first objective is to derive from Eq. (12) a Rosen-
feld–Tarazona compatible EOS. To do so we follow the
algorithm developed by Saika-Voivod et al. (2000). Using
the definition,

AðV ; T Þ ¼ EðV ; T Þ � TSðV ; T Þ ð13Þ

of the Helmholtz free energy, a pressure explicit EOS may
be obtained from the thermodynamic identity

P ¼ � @A
@V

� �
T

ð14Þ

if an expression for the entropy of the system (S) is avail-
able. Fortunately, such an expression may be easily ob-
tained. Start by writing the total derivative of S(V,T) as

dS ¼ @S
@T

� �
V

dT þ @S
@V

� �
T

dV ð15Þ

The two partial derivatives in Eq. (15) may be rewritten
using the first law of thermodynamics (dE ¼ TdS � PdV ) as

dS ¼ 1

T
@E
@T

� �
V

dT þ 1

T
@E
@V

� �
T

þ P ðV ; T Þ
T

� 	
dV ð16Þ

and this expression may be integrated along a path from
some reference volume (V 0) and reference temperature
(T 0) to ðV ; T 0Þ and then from ðV ; T 0Þ to ðV ; T Þ:

SðV ; T Þ � SðV 0; T 0Þ ¼ þ
1

T 0

Z V

V 0

@E
@V

� �
T

þ P ðV ; T 0Þ
� 	

dV

þ
Z T

T 0

1

T
@E
@T

� �
V

dT ð17Þ

Substitution of Eq. (12) into Eq. (17) and carrying out the
integrations results in a Rosenfeld–Tarazona compatible
model expression for the entropy

SðV ; T Þ ¼ SðV 0; T 0Þ þ
1

T 0

aðV Þ þ T 3=5
0 bðV Þ � aðV 0Þ

h

�T 3=5
0 aðV 0Þ þ

Z V

V 0

P ðT 0; V ÞdV
	

� 3

2

1

T 2=5
� 1

T 2=5
0

 !
bðV Þ þ 3n

2
R ln

T
T 0

� �
ð18Þ



Table 3
Rosenfeld and Tarazona (1998) fits to potential energy.

Volume (g/cm3) U ¼ aþ bT 3=5

a SE a b SE b R2 F

0.416977 �158.2226 0.0349 0.0435949 0.000216 0.9999511 40858.03
0.397121 �158.0910 0.0217 0.0426463 0.000134 0.9999802 100796.6
0.384902 �158.0437 0.0261 0.0421925 0.000162 0.9999706 67966.76
0.374074 �157.9864 0.0403 0.0416869 0.000250 0.9999281 27823.07
0.367069 �157.9864 0.0262 0.0415823 0.000162 0.9999695 65571.04
0.357409 �157.9623 0.0291 0.0412865 0.000181 0.9999617 52148.53
0.302340 �158.2615 0.0407 0.0429730 0.000252 0.9999314 29148.5
0.296957 �158.2189 0.0626 0.0429362 0.000388 0.9998367 12244.74
0.292616 �158.2825 0.0987 0.0435092 0.000611 0.9996065 5079.053
0.281108 �158.3166 0.0967 0.0444964 0.000599 0.9996380 5521.748
0.250814a �157.2813 0.2252 0.0435598 0.001391 0.9979679 981.1955
0.231119b �155.5868 0.2507 0.0410327 0.001549 0.9971634 702.0697
0.219997c �158.2178 0.0721 0.0449705 0.000461 0.9994745 9508.927
0.204998c �158.3317 0.1103 0.0460226 .0007297 0.9987446 3977.803

a U = �152.68–0.014584T3/5 + 0.00018167T6/5.
b U = �150.44�0.023902T3/5 + 0.00020213T6/5.
c Additional low-pressure isochors computed specifically to stabilize the EOS analysis. Computed values of E, P, T are provided in an

electronic supplement to this paper.
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Fig. 8. Variation of the Rosenfeld–Tarazona coefficients of Table 3
and the thermal pressure coefficient (inset; Table 4) with specific
volume. Both trends are modeled with 6th degree polynomials,
which are plotted; coefficients are reported in Table 5.
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From Eqs. (18) and (12) the Helmholtz energy may be
written

AðV ;T Þ ¼ aðV Þ þ T 3=5bðV Þ þ 3n
2

RT � TSðV 0;T 0Þ

� T
T 0

aðV Þ þ T 3=5
0 bðV Þ � aðV 0Þ � T 3=5

0 aðV 0Þ
"

þ
Z V

V 0

PðT 0;V ÞdV
	

þ T
3

2

1

T 2=5
� 1

T 2=5
0

 !
bðV Þ � 3n

2
RT ln

T
T 0

� �
ð19Þ

Substitution of Eq. (19) into Eq. (14) gives us the equation
of state we seek

P ðV ; T Þ ¼ T
T 0

� 1

� �
daðV Þ

dV
þ 5

2
T 3=5 T

T 0

� �2=5

� 1

" #
dbðV Þ

dV

þ T
T 0

P ðT 0; V Þ ð20Þ

The most important feature of Eq. (20) is the demon-
stration that a Rosenfeld–Tarazona compatible EOS is an
extension of any preferred representation chosen to param-
eterize P–V data along a suitable reference isotherm, i.e.
P ðV ; T 0Þ. One can insert any pressure explicit equation,
such as Eq. (1), into Eq. (20) to produce a practical expres-
sion. In what follows, we utilize the Universal EOS, which
has already been fitted to the 5000 K isotherm (Table 1).

The functions aðV Þ and bðV Þ may be obtained by inter-
polating the regression coefficients of Table 3 as a function
of volume (Fig. 8). We have found that an interpolating
polynomial is a good representation of aðV Þ and bðV Þ as
long as additional constraints are imposed on the slopes

of the interpolants, especially near the upper volume limit.
These additional constraints arise because daðV Þ

dV and dbðV Þ
dV

affect the modeled value of the thermal pressure coefficient
(aK), which is calculated from

aK ¼ @P
@T

� �
V

¼ 1

T 0

daðV Þ
dV

þ 3

2
T�2=5 5

3

T
T 0

� �2=5

� 1

" #

� dbðV Þ
dV

þ P ðT 0; V Þ
T 0

ð21Þ
Eq. (21) is readily derived by differentiation of Eq. (20).
As discussed in Part I, the quantity ð@P

@T ÞV may be estimated
directly from MD simulations performed along a given iso-
chore. For the present purposes, we extract an average P–T

slope for each isochore (Table 4, insert Fig. 8) and use these



Table 4
Estimates of ð@P=@T ÞV from MD isochors.

Volume (g/cm3) ð@P=@T ÞV SE R2

0.416977 57.18 0.893 0.999
0.397121 53.81 1.40 0.997
0.384902 48.96 0.563 0.999
0.374074 43.97 0.508 0.999
0.367069 42.87 0.373 1.000
0.357409 40.96 0.636 0.999
0.302340 19.60 0.088 1.000
0.296957 16.72 0.330 0.998
0.292616 14.69 0.235 0.999
0.281108 12.34 0.252 0.998
0.250814 9.774 0.453 0.991
0.231119 6.649 0.514 0.977
0.219997 2.331 0.434 0.852
0.204998 1.100 0.377 0.631

Units: GPa/K � 10�4.
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Fig. 9. Modeled densities computed from the RTU EOS and the
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parameterization. Uncertainty in MD pressure estimates is within
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slopes as estimates for ð@P
@T ÞV . Polynomial interpolating

functions for aðV Þ and bðV Þ derived under these constraints
are drawn in Fig. 8 and coefficients are reported in Table 5.

Results computed from the Rosenfeld–Tarazona-Uni-
versal (RTU) EOS are plotted in Fig. 9 and compared to
data from Part I. Two sets of isotherms are indicated, cor-
responding to the low- and high-P parameterizations of the
Universal EOS along the 5000 K reference isotherm (T 0).
For brevity, we will refer to these as the low-P RTU and
high-P RTU, respectively. In Fig. 10, the internal energy
computed from Eq. (12) is plotted and compared to data
from Part I. As in Fig. 9, two sets of isotherms are indi-
cated. Where a given low-P RTU isotherm intersects the
corresponding high-P RTU isotherm in Figs. 9 and 10,
the values of P, V, E, and T are identical for both param-
eterizations. At such a state point the entropy difference
between the two models is given from Eq. (18) as

DSðV ; T Þ ¼ DSðV 0; T 0Þ þ
1

T 0

Z V

V 0

½P H ðT 0; V Þ � P LðT 0; V Þ�dV

ð22Þ

where the subscript denotes high (H) and low (L) pressure.
As a model parameter, we are free to choose the entropy
difference in the reference state [DSðV 0; T 0Þ] to exactly can-
cel the volume integral of the reference isotherm EOS,
thereby zeroing DSðV ; T Þ. Consequently, S can be made
identical for both parameterizations at the point where
Table 5
Rosenfeld–Tarazona coefficients.

a0 a1 a2 a3

501.077 �9323.96 53222.6 �1561
aðV Þ ¼ a0 þ a1V þ a2V 2 þ a3V 3 þ a4V 4 þ a5V 5 þ a6V 6 (kJ/g)

b0 b1 b2 b3

�1.81314 25.6373 �137.563 355.94
bðV Þ ¼ b0 þ b1V þ b2V 2 þ b3V 3 þ b4V 4 þ b5V 5 þ b6V 6 (kJ/g K3/5)

V in cm3/g; the order of the interpolating polynomial is chosen to fit
uncertainty.
the RTU isotherms cross. Identical values of V, E, T, P,
and S imply identical values of A, the Gibbs free energy
(G), and the enthalpy (H). Formally, this condition can
a4 a5 a6

09 246019 �194390 58172.9

b4 b5 b6

3 �433.001 167.220 49.6361

the a, b, ð@P
@T ÞV values (Tables 3 and 4) at the estimated level of
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be interpreted as one of equilibrium between two “phases,”
and the locus of isotherm intersections in Fig. 9 can be
thought of as the path of a “phase transition.” In keeping
with the fact that our justification for utilizing a low- and
high-P parameterization is driven by apparent changes in
melt structure, the modeled “transition” between these
two liquids is here determined to be displacive or second
order (DS ¼ 0, DV ¼ 0). Most likely, the “transition” is
not strictly univariant as displayed in Fig. 9, but is smeared
out over an interval as is typical of most displacive or
order–disorder transformations. If we were interested in
modeling details of the behavior of the thermodynamic
properties in the region of the “transition” a possible proce-
dure might be to introduce an ordering parameter,
0 6 r 6 1, into the model and rewrite Eq. (19) as

AðV ; T Þ ¼ aðV Þ þ T 3=5bðV Þ þ 3n
2

RT � TSðV 0; T 0Þ

� T
T 0

aðV Þ þ T 3=5
0 bðV Þ � aðV 0Þ � T 3=5

0 bðV 0Þ
n

þ
Z V

V 0

½rP LðT 0; V Þ þ ð1� rÞP H ðT 0; V Þ�dV



þT
3

2

1

T 2=5
� 1

T 2=5
0

 !
bðV Þ � 3n

2
RT ln

T
T 0

� �
þ RTXðrÞ

ð23Þ
where XðrÞ [ lim

r!0;1
XðrÞ ¼ 0] is a function that describes the

mixing entropy across the transition. In Eq. (23) a zero va-
lue of r would utilize the high-P parameterization, while a
value of unity would utilize the low-P calibration. Interme-
diate values of r are determined by minimizing A with re-
spect to r, i.e. imposing the condition of homogeneous

equilibrium [set ð@A
@r ÞV ;T ¼ 0 and solve for r]. As our inter-

ests are not focused on the details of the “transition” inter-
val, we will leave the development of the order parameter
extension of RTU to a subsequent paper and more appro-
priate data set.

The modeled thermal pressure coefficient is plotted in
Fig. 11a. Comparison should be drawn with results from
the alternative EOS plotted in Fig. 6a. Both models of the
thermal pressure coefficient represent the data set in a sta-
tistically equivalent manner, but the functional form of
the RTU EOS is clearly superior in transitioning between
the low- and high-P regimes.

In Fig. 11b, the isochoric heat capacity, which is given
by

CV ¼
3

5

bðV Þ
T 2=5

þ 3n
2

R ð24Þ

from the Rosenfeld–Tarazona model of the internal energy
(Eq. (12)), is plotted and compared to MD estimates.
Results plotted in Fig. 11b should be compared to those
in Fig. 6b. The RTU model is better at reproducing the
CV estimates, as might be expected given the number of
parameters devoted in the RTU model to the tempera-
ture-dependence of the internal energy. Nevertheless, as
with the thermal pressure coefficient, the transition between
the low- and high-P regimes is better modeled by the RTU
formalism.
Model expressions for the bulk modulus and for the
isobaric coefficient of thermal expansion are given by

K ¼ � T
T 0

� 1

� �
V

d2aðV Þ
dV 2

� 5

2
T 3=5 T

T 0

� �2=5

� 1

" #
V

� d2bðV Þ
dV 2

� T
T 0

V
dPðT 0; V Þ

dV
ð25Þ

and

a ¼ �
1

T 0

daðV Þ
dV þ 3

2
T�2=5 5

3
T
T 0

� �2=5

� 1

� 	
dbðV Þ

dV þ
PðT 0 ;V Þ

T 0

V T
T 0
� 1

� �
d2aðV Þ

dV 2 þ 5
2
T 3=5 T

T 0

� �2=5

� 1

� 	
d2bðV Þ

dV 2 þ T
T 0

dP ðT 0 ;V Þ
dV

 

ð26Þ

These quantities, along with the thermal Grüneisen
parameter, are plotted in Fig. 11c–e. Compare these results
with those of the alternate model plotted in Fig. 6c–e.

The RTU EOS model of the isothermal bulk modulus is
clearly superior to the volume-explicit EOS of Eq. (3).
While fits to the low-pressure isochors are statistically
equivalent in both models, data recovery is much better
for the RTU equation at higher pressures. Modeled values
of a and c from the RTU EOS also reproduce the MD array
with smaller systematic residuals.

In summary, we find that the RTU model is preferable in
representing the thermodynamic properties of CaAl2Si2O8

liquid as computed by the molecular dynamics study of
Part I. The temperature-dependent Universal EOS (Eq.
(2)) does not capture the correct functional form of the
V–T–P relations. The volume-explicit EOS of Ghiorso
(2004a) (Eq. (3)) does a much better job over the Universal
equation at representing the data array, and does so with a
minimal number of adjustable parameters. We prefer the
RTU formulation because there are fewer systematic offsets
to model residuals compared to the Ghiorso equation and
because the temperature-dependence of the model is rooted
in physical theory. In applying the model developed here, it
should be borne in mind that the potential energy–temper-
ature relation of Rosenfeld and Tarazona (1998) does fail at
very high-pressure, and model predictions at P > 70 GPa
should be questioned. We recommend that the model not
be applied much outside the density range 2.2–4.3 g/cc, as
extrapolation of the functions aðV Þ and bðV Þ might poten-
tially give erroneous results. Extrapolation in temperature
is much more secure. We recommend that the low-P
RTU model be used up to the “transition” curve (Fig. 9)
and the high-P model be used for denser fluids. As the
“transition” is modeled as second order, there will be no
discontinuities in G, A, E, H, S, or V as a consequence of
this approximation.
4. APPLICATIONS OF THE MODEL

In this section we will apply our thermodynamic model
to calculation of the liquid–liquid first order phase transi-
tion and shock Hugoniot of molten CaAl2Si2O8 and com-
pare the latter to experimental results.
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4.1. Liquid–liquid phase transition

A criterion for the thermodynamic stability of a phase is
that its bulk modulus is a positive quantity. Modeled P–V–
T state points for which the bulk modulus is negative violate
this stability condition; a single homogeneous phase cannot
exist at these state points. The onset of instability corre-
sponds to the locus of P–V–T points which satisfy the EOS
of the substance and which zero the bulk modulus (ð@P

@V ÞT ¼
0, Prigogene and Defay, 1954). In a muliticomponent system,
un-mixing into two phases generally results in differential
partitioning of components. In a single component system
however, coexisting phases differ in structure (density) rather
than composition. In the case of the RTU EOS model of
CaAl2Si2O8 liquid described in the previous section, the
incipient instability condition is given by (from Eq. (20))

0 ¼ � T
T 0

� 1

� �
d2aðV Þ

dV 2

� 5

2
T 3=5 T

T 0

� �2=5
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" #
d2bðV Þ

dV 2
� T

T 0

dPðT 0; V Þ
dV

ð27Þ
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In the literature on liquid–liquid phase transitions in sin-
gle component fluids, the V–T curve resulting from solution
of an equation like Eq. (27) is often referred to as the spin-
odal curve (e.g. Saika-Voivod et al., 2000), which is strictly
a misnomer, as spinodal should be applied to the limit of
compositional stability at fixed T and P in a multicompo-
nent system. Nevertheless, we will also refer to this curve
as the spinode.

The spinode calculated from Eq. (27) using our RTU
model parameterization of CaAl2Si2O8 liquid is plotted
in Fig. 12 as the heavy solid curves. The state point labeled
alternately qC, T C, and P C in the figure is the critical point
corresponding to the onset of un-mixing. This is the high-
est temperature point for which a solution of Eq. (27) may
be found. In the two plots on the left panel of the figure,
P–T and T–q projections of the spinodal curve are shown
with the unstable region (K < 0) shaded. Note, that these
projections should not be interpreted as phase diagrams,
as the limbs of the curves do not necessarily define coexis-
ting compositions in mechanical equilibrium, e.g. in the
T–q plot the limbs of the spinodal curve are at different
pressures. To explore the limits of equilibrium un-mixing
attention should be focused on the diagram in the right
panel of the figure. Here the spinode is shown along with
isotherms (dashed curves) that give solutions to the RTU
EOS in P–q space. An isotherm with multiple values of
q for a given P brackets a region of un-mixing, with the
densities of equilibrium coexisting liquids being given by
the minimum and maximum densities along that isotherm.
The heavy dashed curve corresponds to the critical iso-
therm, above which all liquids are stable. At temperatures
below the critical isotherm, (P, q) points that plot interior
to the limbs of the spinode characterize unstable liquids
that undergo spontaneous un-mixing. Those that plot exte-
rior to the spinode but within the two-phase region are
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Fig. 12. Modeled spinodal curve computed from the RTU EOS and the
temperature (T C), pressure (P C), and density (qC) are indicated. Model is
curves; the heavy dashed curve is the critical isotherm. The dotted curve
metastable liquids, whose un-mixing may be kinetically
inhibited. The heavy dotted curve indicates the maximum
extent of the equilibrium two-phase region for higher
density liquids.

The modeled critical point is well above the temperature
of the glass transition (Morgan and Spera, 2001a,b) but
below the liquid field in the liquid–solid phase diagram
modeled by Ghiorso (2004b). Comparing the critical
density to densities plotted in Fig. 1, it can be seen that
the onset of un-mixing corresponds to a liquid with average
coordination number of SiO[5]. Un-mixing leads to coexis-
ting liquids with higher and lower Si-coordination states,
and it may be important to note that the break in slope
of the V–SiO½�n� relations plotted in Fig. 1 corresponds
approximately to the critical density. Perhaps the “phase
transition” that we discuss above between the low- and
high-P structures is a high-temperature manifestation of
the same positive enthalpic drive that generates the low-
temperature liquid–liquid immiscibility?

Experimental verification of this model prediction of
liquid–liquid un-mixing would necessitate X-ray or optical
observations of phases of differing density in supercooled
CaAl2Si2O8-composition liquids. Optical measurements by
Kuryaeva (2006) and Raman studies by Le Parc et al.
(2003) do not report evidence for un-mixing, but both stud-
ies used material prepared by rapid quenching from the
liquid state at room pressure. To have any hope of detecting
the two-phase region, samples would have to be annealed
below TC, but this temperature is too low at ambient pres-
sure (Fig. 12) to overcome kinetic barriers to phase separa-
tion at laboratory time scales. Supercooled liquids annealed
at higher pressures and temperatures (�1.5 GPa and
�1500 K, i.e. Fig. 12) would be ideal candidates for exam-
ination, but we are not aware of experimental studies of
material prepared under these conditions.
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Fig. 13. Modeled Hugoniot (solid curve) computed from the RTU
EOS and the parameters of Table 5 (5000 K isotherm of Table 1)
compared to experimental data from Rigden et al. (1989) on
shocked liquid (six lowest pressure brackets), Asimow and Ahrens
(2008) on shocked liquid (four highest pressure brackets), Jeanloz
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Boslough et al. (1986) on shocked glass (filled circles). The dashed
curves are Rayleigh lines connecting initial and final shock states.
EOS isotherms are shown as solid lines and are spaced every
1000 K.
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4.2. Calculation of the shock wave Hugoniot

An experimentally determined shock wave Hugoniot for
CaAl2Si2O8 liquid is reported by Rigden et al. (1989). The
data of Rigden et al. (1989) are complemented by the more
recent and higher pressure shock wave experiments of
Asimow and Ahrens (2008). Both data sets are interesting
in that they indicate fairly extreme levels of compression
at moderate- to high-pressure, in contrast to the MD simu-
lation data of Part I. In this context, we compare these
experimental data to the Hugoniot calculated from the
RTU EOS developed above.

The model Hugoniot is a univariant curve in P–V–T

space computed by satisfying simultaneously an EOS,
and an energy balance equation (e.g. Ghiorso, 2004b, his
Eq. (4))

E � Ei ¼
1

2
ðP � P iÞðV i � V Þ ð28Þ

where E is the specific internal energy and the subscript i

denotes the initial conditions of the shock. Eq. (28) may
be easily expressed in a form compatible with the RTU
model. Substituting Eqs. (12) and (20) into Eq. (28) gives
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Taking initial conditions from Rigden et al. (1989,
T i = 1923 K, P i = 0.0001 GPa, and V i = 0.406593 cm3/g,
RTU EOS low-P), the model Hugoniot is computed by
simultaneous solution of Eqs. (20) and (29). Results are
plotted in Fig. 13 along with experimental data. Also shown
are model q–P isotherms and experimental data describing
the Hugoniot of pressure-amorphized (Campbell and
Heinz, 1993), initially crystalline-anorthite (CaAl2Si2O8)
from Jeanloz and Ahrens (1980) and anorthite glass from
Boslough et al. (1986).

It is apparent that the model curve is inconsistent with
the experimental data of Rigden et al. (1989) and Asimow
and Ahrens (2008). Even if the model isotherms are system-
atically displaced by �0.1 g/cc to accommodate the lowest
pressure data and to bring the MD densities into agreement
with Rigden et al.’s (1989) estimate of the initial density, the
six highest pressure points will not fall along an isotherm
that is consistent with the internal energy constraint. The
principal reason the model Hugoniot differs from the exper-
imental one is because the model q–P isotherms steepen
rapidly with increasing pressure, reflecting a significantly
larger bulk modulus at pressure. The zero pressure K mod-
eled by Rigden et al. (1989) is �20 GPa, which is in excel-
lent agreement with the quantity estimated from sound
speed measurements (Ai and Lange, 2008) and in good
agreement with the RTU EOS model value (Fig. 11c;
�10 GPa at zero pressure, �20 GPa at a pressure of
1.5 GPa). However, the Hugoniot datum at �40 GPa
requires �40% compression, which yields an average K of
�75 GPa; that at 80 GPa a compression of �45%, which
yields an average K of �130; and that at 125 GPa a com-
pression of 50%, which yields an average K of �180. All
these values are a factor of two to three lower than the
MD data permit. This discrepancy between the modeled
and experimental Hugoniot may indicate that the MD
results of Part I significantly underestimate the density of
the liquid by as much as �10% at pressures greater than
30 GPa. Alternatively, the comparison may indicate that
the experimental work, especially at the highest pressures,
does not reflect the properties of a liquid.

The two highest-pressure experimental points of Rigden
et al (1989) along the liquid Hugoniot intersect the curve of
Jeanloz and Ahrens (1980) that corresponds to their shock
wave measurements on single crystal anorthite (Fig. 13,
brackets connected by the dashed-dot curve). The data of
Jeanloz and Ahrens are now interpreted (Campbell and
Heinz, 1993) to reflect the properties of an amorphized sub-
stance and this conclusion along with the data of Boslough
et al. (1986; solid circles in Fig. 13) leads to the observation
that the experimentally determined densities of the liquid
and of the glass are identical at pressures in the interval
25–40 GPa. Given that the shock temperatures of the liquid
are likely higher than those of the solid (Rigden et al., 1989,
estimate �2200 K, while Jeanloz and Ahrens, 1980, esti-
mate �1500 K at 40 GPa), the implication is that a density
crossover of the liquid relative to the glass occurs at pres-
sures on the order of 20 GPa. While not implausible, this
seems unlikely. One possible speculation is that the highest
P data of Rigden et al. (1989) correspond to glass and not
to liquid. On the other hand, the data of Asimow and
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Ahrens (2008) plot at lower densities than the glass data at
comparable pressures, and the interpretation of the final
shock state of these experiments as anything other than li-
quid would be purely speculative. A numerical experiment
can be performed to test the notion that a phase transition
would shift the modeled Hugoniot to higher densities there-
by reconciling the MD results with experimental observa-
tion. A first order transition at �20 GPa involving an
internal energy change of �10 kJ/g would be sufficient to
bring the modeled Hugoniot into agreement with observa-
tion, but energies of this magnitude are characteristic of li-
quid–gas phase transitions and not those of condensed
phases. Consequently, reconciliation of the MD modeled
Hugoniot with experiment cannot readily be ascribed to
any solid–liquid or liquid–liquid phase transition. The most
likely explanation of the discrepancy between our modeled
Hugoniot and the experimental one is that the MD results
of Part I under predict the density of the liquid by about
10% at pressures greater than �20 GPa. New MD simula-
tions for liquid CaAl2Si2O8 using the transferable potential
of Matsui (1998) are currently underway and will be used to
reexamine this issue.
5. SUMMARY

A thermodynamic model is developed for CaAl2Si2O8

liquid that successfully parameterizes the molecular dynam-
ics data set of Part I. The model is based upon the isother-
mal Universal EOS (Vinet et al., 1986) combined with an
expression for the temperature-dependence of the internal
energy derived from density functional theory (Rosenfeld
and Tarazona, 1998). This model is more successful at
reproducing the data than the extended Universal EOS
(Vinet et al., 1987) or the volume-explicit EOS of Ghiorso
(2004a). The data of Part I require separate parameteriza-
tions of low (<20 GPa) and high (>20 GPa) pressure
regimes, which we interpret as having distinctly different
liquid structures. The transition between these two regimes
is modeled as second order, although the nature of the tran-
sition is open to question and may well be first order or
lambda-like in character.

Our thermodynamic model predicts a region of liquid–
liquid un-mixing at low-temperatures and pressures.

A shock wave Hugoniot curve is calculated for compar-
ison with the experimental data of Rigden et al. (1989) and
of Asimow and Ahrens (2008). The comparison is unfavor-
able and we conclude that most likely the MD data of Part
I underestimates the density of the liquid by roughly 10% at
pressures greater than 20 GPa.

While the EOS formalism and analysis techniques devel-
oped in this paper should be applicable to a wide range of
silicate liquid bulk compositions, the parameterization
developed here for CaAl2Si2O8 liquid is likely not applica-
ble to naturally occurring melts. The abundance of (Si,A-
l)O[5] at very low pressure (Part I) and the observation
that the shift from a liquid dominated by (Si,Al)O[4] to
(Si,Al)O[5] to (Si,Al)O[6] takes place at lower pressures than
other silicate liquids makes CaAl2Si2O8 liquid unusual (see
Ghiorso, 2004b, for a summary of MD results pertaining to
this issue). We suspect that these low-pressure coordination
shifts generate positive enthalpic contributions that drive li-
quid–liquid un-mixing to higher temperatures, whereas in a
more typical liquid, like molten Mg2SiO4, where the cation
coordination shifts take place at much higher pressures, the
enthalpic contributions are less influential, and conse-
quently, the critical temperature is well below the glass tran-
sition (Martin et al., 2009). The unusual characteristics of
molten CaAl2Si2O8 makes it an interesting liquid to study
but at the same time renders inferences drawn from its
physical properties problematic when applied to melting
in silicate planetary bodies.
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