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aBStract

The distribution of trace elements among coexisting crystals, melt, and supercritical fluid dur-
ing melting and crystallization is a critical constraint for understanding the evolution of magmatic 
systems, including the origin and development of continental and oceanic crust. Although trace-ele-
ment partitioning between crystals and melt during Rayleigh fractional crystallization or melting is 
well-known, partitioning among co-existing melt, crystals, and supercritical fluid during anatexis or 
crystallization is less explored despite the ubiquity of magmatic fluids. Here we develop the trace-ele-
ment differential equations governing solid-melt-fluid equilibria for melting and crystallization under 
fluid-present conditions and provide analytical solutions for fractional and equilibrium crystallization 
and melting. A compilation of solid-fluid and melt-fluid distribution coefficients for about 30 trace 
elements in olivine, clinopyroxene, garnet, plagioclase, alkali feldspar, biotite, amphibole, apatite, 
and silicic melts is provided. Forward modeling demonstrates the conditions under which fluid-melt-
solid partitioning will impact trace-element signatures in magmatic systems. We show that for trace 
elements soluble in aqueous fluids, the composition of a melt derived by fluid-present fractional 
crystallization or by fluid-present fractional melting will be significantly different than in otherwise 
comparable fluid-absent systems. Ignoring the partitioning of soluble elements into the fluid phase 
leads to large errors in concentrations (over 100%) and ratios and consequent misinterpretation of 
the trace-element character of source material and/or the processes of fractional crystallization and 
melting. Although significant in any setting involving fluid-present equilibria, this analysis may have 
a most profound influence on fluid-present subduction zone magma generation and the evolution of 
shallow level fluid-saturated silicic magmatic systems. 
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IntroductIon

Magmatic processes including fractional or equilibrium 
crystallization or melting under isochoric or isobaric condi-
tions, combined recharge-assimilation-fractionation, isentropic 
decompression melting, and volatile-fluxed melting are relevant 
to the eruption and intrusion of about 30 km3 of magma per year 
on Earth in various petrotectonic environments (e.g., White et 
al. 2006). Magmatism is one of the principal mechanisms of 
mass transfer among terrestrial geochemical reservoirs, and 
understanding the partitioning of elements during magmatic 
processes is a keystone for understanding global geochemical 
cycling. In particular, petrogenesis relies on quantitative analysis 
of the distribution of trace elements among coexisting crystals, 
melt, and supercritical fluids during phase transitions such as 
melting, crystallization, and fluid exsolution. It has been argued 
that water is essential for the formation of granite and, in turn, 
granite is essential for the formation of continents. Earth, the 

only terrestrial planet with abundant water, is the only planet 
with granitic cratons and continents (Campbell and Taylor 1983). 
Fluids are ubiquitous in the terrestrial crust and mantle and are 
essential components of magmatic-hydrothermal systems, which 
concentrate intrinsically low abundance trace elements (e.g., Cu, 
Mo, W, Sn, etc.) to form economic mineral deposits (Holland 
1972; Burnham 1979; Candela 1989). Fluids also significantly 
influence magma transport and thermodynamic properties, 
and have dynamical consequences including contributing to 
explosive volcanic eruptions. Fluid components are recycled 
into the upper mantle by subduction of hydrated oceanic crust 
(sediments and altered mafic crust) and may enter the transition 
zone and lower mantle (Litasov et al. 2003; Ohtani et al. 2004). 
Fluids derived from slab dehydration exert important constraints 
on the trace-element signatures of melts generated by anatexis 
of metasomatized (carbonated and hydrated) peridotite (Mc-
Culloch and Gamble 1991; Plank and Langmuir 1998; Stern 
2002; Elliott 2003; Kelemen et al. 2003; Tatsumi 2005) or 
subducted lithospheric sources (Defant and Drummond 1990). 
Prouteau et al. (1999) have argued that slab melting in modern 
subduction zones occurs under fluid-present conditions at tem-
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peratures below 900 °C, in agreement with thermal regimes 
deduced from fluid dynamical calculations. An important role 
for water has been suggested in komatiite genesis in the Archean 
and Proterozoic (Grove and Parman 2004). In the crust, partial 
melting of hydroxyl-bearing source rocks under fluid-present 
conditions (e.g., Berger et al. 2006) and ubiquitous low-pres-
sure, volatile-saturated fractional crystallization are scenarios for 
which solid-melt-fluid trace-element partitioning is important, 
perhaps critically so.

Despite the ubiquity of fluids in magmatic systems, trace-ele-
ment partitioning in solid-fluid-melt multiphase systems has not 
been treated in much detail probably for two reasons: (1) until 
recently, very few data on solid-fluid trace-element partition coef-
ficients were available, and (2) a rigorous and easy-to-implement 
formulation applicable to both fractional melting and fractional 
crystallization applicable to fluid-present processes has not been 
available. Previous work on fluid-present fractional crystalliza-
tion invoked an approximation in which the mass fraction of the 
fluid phase was ignored in the mass-balance expression (Allègre 
et al. 1977). This procedure is generally invalid, especially in 
multiphase systems in which the fraction of fluid (ff) exceeds 
≈0.05. Likewise, the model for fractional melting developed by 
Shaw (1978) assumed that the ratio of fluid to solid mass in the 
residue was constant during progressive fractional melting. How-
ever, because H2O and other volatiles are appreciably soluble 
in melts, the process of fractional fusion leads to progressive 
dehydration of the residue, and thus the mass ratio of fluid to 
solid is not at all constant but instead sharply decreases. 

The main purpose of this work is to present derivations 
of the mass-balance relations for calculation of trace-element 
concentrations in coexisting phases in fluid-present multiphase 
systems subject to either equilibrium or fractional partial melting 
or crystallization. The term “fluid present” means that during the 
process of fractional crystallization (FC) or fractional melting 
(FM), a distinct fluid phase is present. The H2O component, of 
course, is distributed assuming thermodynamic local equilibrium 
between all phases present. If H2O is the only volatile component, 
then the fugacity of H2O in the fluid phase is identical to the 
fugacity of pure H2O at the conditions of pressure and tempera-
ture at which FC or FM takes place. In the FC model, phases 
that exsolve (e.g., water bubbles) or crystallize (phenocrysts) 
from the liquid are instantaneously and completely removed; 
they cannot back react with the melt. In the FM model, the melt 
phase is instantaneously and completely removed during partial 
melting. The melt is assumed not to carry away the fluid phase 
(e.g., fluid bubbles) although the melt will contain significant 
amounts of dissolved H2O. Progressive partial melting is there-
fore an efficient process to dehydrate source materials due to the 
relatively large solubility of H2O in typical crustal and mantle 
melts. If the assumption is made that during FM the fluid phase 
is indeed removed along with volatile-saturated melt (e.g., as 
discrete fluid bubbles), then there can never be a condition of 
fluid-present partial melting. We also present a compilation of 
experimentally determined solid-fluid trace-element partition 
coefficients to facilitate geochemical computations. This paper is 
organized as follows: after a review of previous work, a model for 
trace-element partitioning in solid-melt-fluid systems is offered. 
In particular, we derive the differential mass-balance relations 

governing the partitioning of trace elements among bulk solid, 
melt, and fluid phases during isobaric fractional melting and 
isobaric fractional crystallization. In general, the derived dif-
ferential equations must be solved numerically to account for 
the variation of partition coefficients, fluid mass fraction (ff) and 
water solubility in melt with melt fraction (fm), temperature, and 
melt and fluid composition. Trace-element evolution is formu-
lated as a coupled set of differential equations: one represents the 
material balance for the trace element and the other a material 
balance for the H2O component in a mixed-volatile system. In 
the simplified case when (1) the solid-fluid (Ksf) and solid-melt 
(Ksm) partition coefficients are constant; (2) H2O is the only 
volatile constituent; and (3) the water solubility depends only 
on pressure, an analytical solution may be found. Comparison 
of the fluid-present solutions to those of an otherwise identical 
fluid-absent system reveals large differences for elements with 
solid-fluid partition coefficients Ksf ≤ 1. Solutions are also given 
for equilibrium melting and equilibrium crystallization (Appen-
dix IV). A compilation of mineral-fluid and melt-fluid partition 
coefficients is presented in Electronic Appendix 11 to facilitate 
trace-element analysis in fluid-present systems. The critical con-
clusion of this work is that for many low-field-strength (soluble) 
elements, predicted trace-element concentrations and ratios in 
the melt are quite different compared to otherwise identical, 
but fluid-absent, cases. The ubiquity of fluid-saturated systems 
implies that fluid-present equations should be applicable to many 
magmatic systems. 

prevIouS Work: FluId-preSent FractIonal 
cryStallIzatIon and FractIonal MeltInG

The distribution of trace elements between crystals and melt 
in magmatic systems governed by Rayleigh fractional crystalliza-
tion has long been a topic of intense geochemical interest (e.g., 
Gast 1968; Schilling and Winchester 1967; Allègre et al. 1977; 
Allègre and Minster 1978; Minster et al. 1977; Albarède 1995). 
The more general case of fluid-present solidification—that is, 
fractional crystallization of a fluid-saturated melt—has received 
far less attention, despite the ubiquity of fluids in magmatic 
systems. Virtually all erupted magmas are fluid saturated, a 
consequence of the very low solubility of water (and most other 
volatile species) at low pressure and the strong dependence of 
water solubility upon pressure. Significantly, experimental data 
show that some trace elements are strongly fractionated into a 
supercritical aqueous fluid phase relative to coexisting solids 
and melt (e.g., Brenan et al. 1995; Keppler 1996; Stalder et al. 
1998; Kessel et al. 2005; see Electronic Appendix 1 for many 
additional references and database), thus clearly establishing 
the relevance of fluid-present, trace-element fractional crystal-
lization. Earlier work on this problem by Allègre et al. (1977) 

1 Deposit item AM-07-034, Electronic Appendix 1 (a compilation 
of mineral-fluid and melt-fluid partition coefficients).  Deposit 
items are available two ways: For a paper copy contact the 
Business Office of the Mineralogical Society of America (see 
inside front cover of recent issue) for price information. For an 
electronic copy visit the MSA web site at http://www.minsocam.
org, go to the American Mineralogist Contents, find the table of 
contents for the specific volume/issue wanted, and then click on 
the deposit link there. 
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explicitly made the approximation of neglecting the presence 
of the fluid phase in the material-balance expression. Although 
this assumption is reasonable for very dry magmas (<0.5 wt% 
H2O) at high pressure, it introduces large errors when applied to 
relatively soluble low-field-strength elements in typical hydrous 
magmatic systems. In fact, this assumption is unnecessary if 
proper accounting of the magma water budget is made. In Ap-
pendix I, the derivation of Allègre et al. (1977) is presented and 
compared to the different formulation developed in this study. 
In fact, Allègre et al. (1977) did not perform any trace-element 
calculations of fluid-present fractional crystallization because 
in their words “such calculations are impossible because we do 
not know the values of the solid-fluid partition coefficient…” 
(p. 65). In the intervening thirty years, the situation has changed 
dramatically, and it is now appropriate to develop a model that 
can be used in geochemical calculations. 

Turning now to fractional melting in the presence of a fluid 
phase, we note that Shaw (1978) addressed this problem thirty 
years ago. He assumed that during progressive partial melting, 
the mass ratio of fluid to solid in the residue is constant. This is 
often a poor assumption. Because H2O is rather soluble in natural 
melts, the effect of melt removal during fractional melting is 
to dehydrate the residue. The ratio of fluid to solid mass in the 
residual solid is not constant during progressive partial melting as 
assumed in the Shaw formulation. To our knowledge, there is no 
quantitative model for predicting trace-element concentrations in 
melt, fluid, and residual solids during fluid-present anatexis that 
accounts for the progressive removal of water (i.e., dehydration) 
from the source region that accompanies escaping melt. In sum, 
the geochemical consequences of fluid-present crystallization and 
fluid-present partial melting have not been examined in adequate 
detail. The aim of this work is to remedy this situation.

ISoBarIc FractIonal cryStallIzatIon under 
FluId-Saturated condItIonS

Background
The distribution of minor and trace elements between coex-

isting phases in fractional crystallization depends on the phase 
proportions (i.e., fluid, melt, and solid abundances), on the equi-
librium partitioning behavior between solid-melt (Ksm = Cs/Cm) 
and solid-fluid (Ksf = Cs/Cf) and on the solubility of water in the 
melt. The water solubility in turn depends upon the temperature, 
pressure, and melt and fluid composition. There are alternative 
but equivalent ways of writing partition coefficients in multiphase 
systems. Here we choose Ksm and Ksf because most experimental 
results are couched in these terms (see Electronic Appendix I). 
Conversion to other forms, such as the melt-fluid partition co-
efficient, is accomplished using the identity Kmf = Ksf /Ksm. It is 
widely appreciated that bulk partition coefficients change during 
progressive crystallization due to variations in the abundance and 
composition of solids. The phase assemblage, water solubility, 
and mass fractions of melt (fm) and fluid (ff) depend, in turn, upon 
thermodynamic parameters such as temperature, pressure, system 
bulk composition, and oxygen fugacity. Hence, the prediction 
of trace-element distributions demands accurate knowledge 
of the relevant phase equilibria. Examination of experimental 
solid-fluid and melt-fluid partition coefficients for volumetrically 

important phases (e.g., olivine, garnet, clinopyroxene, plagio-
clase, alkali feldspar, micas, apatite) in equilibrium with aqueous 
fluids indicates that bulk solid-fluid (Ksf) partition coefficients 
can be small, significantly <0.1. This means that these elements 
are appreciably soluble in supercritical aqueous fluids, and even 
if incompatible, they are not necessarily sequestered into melt 
but instead into coexisting fluid. Consequently, the concentration 
in the melt of two equally incompatible or compatible elements 
(i.e., similar Ksm), of different solubility in coexisting supercriti-
cal fluid (i.e., different Ksf), can be very different in fluid-present 
compared to fluid-absent crystallization. Below a derivation 
of the differential expressions for trace-element abundance in 
systems undergoing isobaric fractional crystallization in the 
presence of a fluid phase is presented. 

Mass-balance derivation 
Consider a mass Mm

o of a single-phase multicomponent silicate 
melt subject to closed-system, isobaric fractional crystallization 
by removal of heat. At any temperature (or enthalpy), the multi-
phase mixture of crystals (s), melt (m), and supercritical fluid (f) 
sums to the total initial mass of the system. That is

MS + Mm + Mf = Mm
o   (1)

 
or in differential terms

dMs + dMm + dMf = 0.  (2)

For the ith trace element of mass mi, the analogous expres-
sions are:

ms,i + mm,i + mf,i = mo
m,i = Co

m,i Mo
m,i  (3)

 
and

dms,i + dmf,i + dmm,i = 0.   (4)

The subscript “i” refers to the ith trace element and is dropped 
hereafter; the superscript “o” refers to the initial conditions. To 
obtain the differential balance, allow for an increment of change 
in which dms of a trace element is removed from the melt due to 
solid formation by fractional crystallization and simultaneously 
dmf is removed from melt by fluid exsolution into a coexisting 
supercritical fluid phase. The concentrations of trace element 
in the solid and fluid phases are Cs and Cf, respectively, at the 
instant of removal. Then Equation 4 is written:

dms + dmf = –dmm = –d(CmMm)  (5)
 

or

CmdMm + MmdCm = –CsdMs – CfdMf.  (6)

In Equation 6, the instantaneous concentrations of s trace 
element in precipitated solid and exsolved fluid are given by

C
dm
dM

C Ks
s

s
m sm= =   (7)
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and

C
dm
dM

C
K

C
K
Kf

f

f

s

sf
m

sm

sf

= = =  (8)
 

respectively. Equations 7 and 8 also define the bulk solid-melt 
(Ksm) and solid-fluid (Ksf) partition coefficients, respectively. 
Mass in Equation 6 can be converted to mass fraction using 
the definition:

f
M

M M M
M
Mm

m

m f s

m

m
o=

+ +
= . (9)

Analogous expressions for ff, the mass fraction of supercriti-
cal fluid and fs, the mass fraction of solid, are similarly defined. 
Upon introduction of the equilibrium bulk solid/melt and bulk 
solid/fluid partition coefficients (Ksm ≡ Cs/Cm and Ksf ≡ Cs/Cf, 
respectively), Equation 6 is: 

dC
df

K K
df
df

Km

m
sm sf

f

m
sm= − + −











−( ) ( )1 11 

C
f

m

m

 (10)
 

or, equivalently,

d C
d f

K K
df
df

Km

m
sm sf

f

m
sm

ln
ln

( ) ( )= − + −−1 11 . (11)

To determine the variation of trace-element concentration 
in the melt during fractional crystallization, the total derivative 
of the mass fraction of fluid with respect to mass fraction of 
melt must be specified. In general, this derivative depends on 
temperature, pressure, and the bulk composition of the system 
(including the volatile constituents and their partitioning between 
melt and fluid), and must be independently determined from a 
thermodynamic model. To define the derivative of fluid fraction 
with respect to melt fraction in Equation 11, a material balance 
on H2O component in a fluid-present, mixed-volatile system un-
dergoing isobaric fractionation can be invoked. This leads to:

Z f S T X X w fw
o

m w m f w
f

f= +( , , )  (12)
 

where Zw
o is the initial mass fraction of the H2O component in 

the system (a constant), fm is the mass fraction of melt, Sw is the 
solubilty of water in the melt (a function of temperature, melt 
composition, and fluid composition), ff is the mass fraction of 
fluid in the system, and wf

w is the mass fraction of H2O in the 
mixed-volatile fluid phase. The derivative of the fluid fraction 
with respect to the melt fraction can be found from Equation 12 
once the solubility function and variation of fluid-phase composi-
tion with melt fraction are specified:

df
df

Z S f
d w

df
f

w
f

m
w
o

w
m

m
w
m

m

m

w
m=− +( ) −










ln 
−

dS
df

S
w

w
m

m

w
m

w
m

. (13)

The right hand side (RHS) of Equation 13, and hence Equa-
tion 10, is not constant due to the dependence of water solubility 
on temperature, melt, and fluid composition, and because the fluid 
composition varies during progressive crystallization. In fluid-
present fractional crystallization, even when the mass ratio of 
precipitating solids is constant (e.g., at the eutectic), the RHS of 
Equation 10 cannot be written in terms of a bulk solid-melt-fluid 
constant partition coefficient because of the complications in-
duced by the presence of a fluid phase embodied in Equation 13. 

Fluid-present, trace-element analysis is, therefore, fundamentally 
different than that for solid-melt trace-element partitioning. 

There are instructive special circumstances for which a sim-
pler treatment may be found. In systems where (1) all solid-melt 
and solid-fluid partition coefficients are constant; (2) only one 
volatile constituent is considered (e.g., H2O); and (3) the solubil-
ity of water is independent of temperature and system composi-
tion, then, and only then, Equation 13 reduces to df

df
Sf

m
w
m=− =φ  with 

φ equal to a constant. These assumptions enable one to determine 
an explicit analytical solution to Equation 10 and hence gain a ba-
sic understanding of the systematics of trace-element distribution 
in magma that is initially (or becomes) water-saturated during the 
course of crystallization. In applications to natural geochemical 
systems, the validity of the aforementioned assumptions should 
be assessed. The relationship of this simplified case to the stan-
dard bulk partition coefficient approach in multiple solid-melt 
trace element analysis is explored in Appendix II.

SolutIon oF MaSS-Balance equatIon and error 
analySIS

For constant Ksm, Ksf, and φ ≡ dff /dfm, the coupled solution 
of Equations 13 and 10 is obtained by straightforward integra-
tion. The initial condition at the liquidus temperature (fs → 0) 
is Cm = Cm

o at fm = fo
m. The concentration of a trace element in 

the two-phase (melt plus fluid) system, Csys is related to the 
phase fractions and trace-element concentrations according to 
C f C f

K
K

Csys m
o

m
o

m
o sm

sf
m
o= + −( )1 . It follows that the initial amount and 

concentration of a trace element in the fluid are fo
f  = 1– fo

m  and

 
C

K
K

Cf
o sm

sf
m
o= , respectively. In the case where the melt is just saturated 

(trace of fluid phase), then fm
o = 1, Csys = Cm

o, and ff
o = 0. The physical 

significance of φ is established by performing a material balance 
on the H2O component. This gives Zo

H2O + fmφH2O = ff, where Zo
H2O is 

the initial mass fraction of H2O component in the system and φH2O 
is the negative of the solubility of water in the melt. The solution 
to Equation 10 for the concentration of trace element in the melt 
(Cm) and derivative expressions for the instantaneous and average 
composition of bulk solid (Cs and Ĉs) and fluid (Cf and Ĉf) are:

C
C

f
f

m

m
o

m

m
o

K K Ksm sf sm

=











− + −−( )1 11 φ

  (14)

C
C

K
f
f

s

m
o sm

m

m
o

K K Ksm sf s

=











− +−( )1 1 φ mm−1

 (15)

ˆ
( ) [( ) ]

C
C

f f K
f
f

s

m
o m m

o
sf

m

m
o= − − +






− − −1 1 11 1φ







−
















− +−K Ksm sf[( ) ]1 11

1
φ



 

(16)
C
C

K
K

f
f

f

m
o

sm

sf

m

m
o

K Ksm sf

=











− −( )1 1 φ++ −Ksm 1

  (17)

ˆ
( ) [( ) ]

C
C

K f f K
f
f

f

m
o sf m m

o
sf

m

m
o= − − +− − − −1 1 1 11 1φ











−









− +−K Ksm sf[( ) ]1 11

1
φ







 

(18)
The average composition of solid and fluid (Ĉs and Ĉf, respec-

tively) refers to the mean composition of solid or fluid removed 
from the melt over the crystallization interval. Note that in the 
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fluid-absent case (φ = 0; fm
o =1), Equation 14 reduces to the clas-

sical Rayleigh solid-melt fractionation expression: 

C
C

fm

m
o m

Ksm= −( )1  (19)

When a fluid phase is present, the concentration of a trace ele-
ment in the melt depends upon Ksm, Ksf, and φ = dff /dfm. The effect 
of ignoring partitioning of a trace element into the fluid on the 
concentration of that the element in the melt can be determined 
by finding the fractional error using Equations 14 and 19. If a 
fluid phase is present and has been ignored, then the fractional 
error in the calculated melt composition is 

C C
C

f fm m

m
m

K K
m
o K

sm sf sm
3 2

3

1 1
1

1
Ψ Ψ

Ψ

−
= − ( )− − − −−( ) φ KK Ksm sf( )1 1− − φ

 (20)
 

where Cm
3Ψ and Cm

2Ψ represent the fluid-present melt composition 
and the fluid-absent melt composition, respectively. If it is as-
sumed that melt is just water-saturated at the liquidus, then fm

o = 
1 and the last factor on the RHS of Equation 20 is unity. From 
Equation 20, if Ksf is small (i.e., a trace element is soluble) and 
for typical fluid contents (φ ~ –0.05), the error can be quite 
large. In Figure 1, the percent error in the absolute value of the 
concentration of a trace element in the melt is shown as a func-
tion of Ksm and Ksf. Specifics of the calculations are provided in 
the figure caption. The striking observation related to Figure 1 is 
how large the errors are for Ksf < 1. For example, for an element 
with Ksm = 1, errors from ~30% to >100% occur for Ksf  ≤ 0.1, 
which, as we demonstrate in another section, is a reasonable 
Ksf for many soluble elements in typical silicate systems. For a 
soluble but relatively compatible element, most of the element is 
in the fluid relative to coexisting melt and solid. Neglecting the 
existence of the fluid phase in such a case will lead to erroneous 

conclusions. At the end stages of fractional crystallization, water 
saturation is a typical condition especially at shallow depth and 
hence Equations 14–18 are applicable. 

The relationships derived above are valid when multiple 
solid phases are involved in isobaric fractionation, if the bulk 
partition coefficients: 

K w Ksm i
i

n

sm
i=∑   (21) 

 
and 

K w Ksf i
i

n

sf
i=∑    (22)

 
(where wi is the mass fraction of the ith phase in the assemblage 
at some particular fm) are used to replace Ksm and Ksf in Equa-
tions 14–18.

Scale analysis 
It is useful to categorize the behavior of a trace element 

according to both its partitioning between solid and melt (i.e., 
its incompatibility) and its partitioning between solid and fluid 
(i.e., its solubility). The melt-fluid partition coefficient Kmf (≡ 
Cm/Cf = Ksf /Ksm) is smallest for soluble, compatible elements, and 
greatest for insoluble, incompatible elements. Unlike the case in 
fluid-absent crystallization, the concentration of an incompatible 
element in the melt during solidification can either increase or 
decrease depending on the values of Ksm, Ksf, and φ. To simplify 
the discussion, in reference to Equation 14, we define A = Ksm(1 
– Ksf

–1) and B = Ksm – 1. These parameters determine the sign 
and magnitude of Aφ + B, the exponent in Equation 14. Here, 
we establish the categories for solid-melt partitioning of very 
incompatible (Ksm < 10–3), moderately incompatible (Ksm ≈ 10–1), 
compatible (Ksm ≈ 1), and very compatible (Ksm > 3) elements and 
for solid-fluid partitioning of very soluble (Ksf < 10–4), soluble 
(Ksf ≈ 10–2), moderately soluble (Ksf ≈ 1), and insoluble (Ksf > 
100) elements. An element in a specific phase in equilibrium 
with a particular melt can be roughly categorized depending 
upon temperature, pressure, oxygen fugacity, bulk condensed 
phase composition, and fluid-phase composition. Scale analysis 
of Equation 14 allows one to determine geochemical partitioning 
in asymptotically limiting situations. Consider, for example, a 
group of elements, all of which are incompatible (Ksm = 10–2) but 
of varying solubility (e.g., Ksf from 10–4 to 100). For a soluble but 
incompatible element, the sum Aφ + B → –(1+ φKsm/Ksf) whereas 
for an insoluble but incompatible element, the sum Aφ + B → 
φKsm – 1. For a very incompatible, insoluble element, Aφ + B 
→ –1 and the classical Rayleigh fractionation result, C

C
fm

m
o m= −1 , is 

recovered. In contrast, for a compatible element of varying solu-
bility, limiting values for Aφ + B are –φKsm/Ksf for high-solubility 
elements, and φKsm for insoluble ones. These and other limiting 
forms for Aφ + B are summarized in Table 1. 

Graphical results
Solution to Equation 14 is presented in Figures 2 and 3 for 

a range of Ksm and Ksf, and for melts of different (but petrologi-
cally typical) water solubility (recall Sw = –φ). The curves give 
the normalized concentration, Cm/Cm

o for Ksf values spanning the 
range of behaviors from incompatible to compatible. To obtain 

FIGure 1. Error analysis for fractional crystallization plots bulk Ksf 
vs. absolute value percent error in Cm, based on Equation 20. Results 
shown for fm = 0.5 (50% fractional crystallization); φ = –0.04 (4% H2O 
at fm = 0); range of Ksm from 0.001 to 3. Stippled region denotes negative 
values of percent error (i.e., Cm

3Ψ < Cm
2Ψ). Note that percent error for Ksf 

= 1 is 0 for all Ksm. Thus, Ksf  = 1 yields solution that is equivalent to 
fluid-absent conditions. 
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solutions, values of the derivative φ = dff /dfm are needed. Based 
on the concentration of H2O in common magmas, reasonable 
values for φ = dff /dfm are –0.1 < φ < –0. 01. This range is consis-
tent with H2O abundances from 1 to 10 wt% in common primary 
magmas; smaller (i.e., more negative) values are expected for 
“wet” magmas characteristic of silicic systems. In Figure 2, φ 
is set equal to –0.04, appropriate for a moderately wet parental 
magma initially containing 4 wt% dissolved H2O (Zw

o = 0.04), 
whereas in Figure 3, φ equals –0.08, a value appropriate for 
“wet” compositionally evolved magmas (~8 wt% initial H2O). 
In isobaric fractional crystallization, other than a small amount 
of H2O bound in hydrous phenocrysts (e.g., biotite, amphibole, 
apatite, etc.), most of the H2O is exsolved from the melt and 
removed via “second boiling.” 

Relations are shown for four values of Ksm ranging from 

incompatible (0.001, 0.1) to compatible (1,3). Cm/Cm
o is plotted 

vs. melt fraction (fm) in the multiphase (solid + melt + fluid) 
magmatic mixture. For φ = –0.04, the impact that fluid-present 
conditions has on the trace-element signatures varies and depends 
on Ksm. For a highly incompatible element (Ksm = 0.001), the ele-
ment must be highly soluble (Ksf > 10–4) to generate a substantial 
deviation from fluid-absent signatures (Fig. 2a). In all plots, 
Ksf  = 1 illustrates system behavior for fluid-absent conditions. 
Deviations occur for cases in which Ksf < 0.01 for moderately 
incompatible elements (Fig. 2b); for example, at 50% crystal-
lization, a system with Ksm = 0.1 and Ksf = 10–3, fluid-present 
conditions would yield more than an order-of-magnitude lower 
trace-element concentration, relative to fluid-absent conditions. 
For a fluid-saturated melt that has only olivine or olivine and 
clinopyroxene as liquidus phases, fractional crystallization has 

Table 1.  Scale analysis 
 Very Incompatible Ksm < 10–3 Moderately Incompatible Ksm ≈ 10–1 Compatible Ksm ≈ 1 Very Compatible Ksm >3

Very Soluble Ksf < 10–4 –[(Ksm/Ksf)φ + 1] –[(Ksm/Ksf)φ + 1]  (–Ksm/Ksf)φ Ksm(1 – φ/Ksf)
Soluble Ksf ≈ 10–2 –[(Ksm/Ksf)φ + 1] –[(Ksm/Ksf)φ + 1] (–Ksm/Ksf)φ Ksm(1 – φ/Ksf)
Moderately Soluble Ksf ≈ 1 Ksmφ – 1 Ksmφ – 1 Ksmφ Ksm(φ + 1)
Insoluble Ksf > 100 –1 Ksmφ – 1 Ksmφ Ksm(φ + 1)

FIGure 2. Plots depicting behavior of normalized trace-element concentration (Cm/Cm
o) vs. fm for fractional crystallization; φ = –0.04. In all 

plots, Ksf  = 1 illustrates system behavior for fluid-absent conditions. (a) Curves illustrating Cm/Cm
o trends for Ksm = 0.001 and Ksf of 10–6 to 1. (b) Ksm 

= 0.1 and Ksf of 10–4 to 100. (c) Ksm = 1.0 and Ksf of 10–3 to 1000. (d) Ksm = 3 and Ksf of 10–3 to 1000. Calculations stopped at fm = 0.05.
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the potential to change concentrations of elements such as Rb, 
Sr, Pb, and U relative to less-soluble ones such as many of the 
REE, Zr, or Nb. For compatible elements, discernible differ-
ences can be seen at Ksf as large as 10–2. For example, an element 
characterized by Ksm = 1 and Ksf = 10–2, fluid-present conditions 
of φ ≈ –0.04 would yield slightly more than an order-of-magni-
tude lower trace-element concentration, relative to fluid-absent 
conditions. 

In Figures 3a–3d, the normalized concentration of a trace ele-
ment in the melt is shown for a parental melt containing 8 wt% 
H2O (φ = dff /dfm = –0.08). Relations are shown for the same set 
of values of Ksm as in Figure 2. Comparison of Figures 2 and 3 
shows that the higher fluid content magnifies the differences in 
trace-element concentration, as expected. For example, for Ksm 
= 0.1 and Ksf = 10–3, 50% crystallization yields approximately an 
order-of-magnitude lower normalized concentration, compared 
to the φ = –0.04 case, and two orders of magnitude lower than 
the fluid-absent case. 

From these simple calculations, it is clear that assessing the 
role of fluids in trace-element balance is essential during fluid-
present fractional crystallization. There have been hundreds of 
cases of fractional crystallization for petrologic systems presented 

in the literature in the past 30 years. To our knowledge, few of 
these studies have explicitly considered the effect of simultaneous 
solid-fluid-melt trace-element partitioning, despite the fact that 
fluid-saturation during fractional crystallization is common. For 
very insoluble elements, neglect of fluids is less egregious although 
small errors can still be incurred. For soluble elements, lack of 
consideration of fluids renders any analysis inchoate at best.

ISoBarIc FractIonal MeltInG under FluId-     
Saturated condItIonS

Mass-balance derivation
Consider a system, initially composed of multiple solid phases 

of total mass (Ms 
o) and a single fluid phase (M fo) subject to fractional 

melting under isobaric conditions. In fractional melting, silicate 
melt generated by partial melting is immediately and completely 
removed from the system. Although the fluid phase remains in 
the residue, fluid components will be removed from the system 
due to progressive removal of fluid-saturated melt. Our interest is 
in calculating the concentration of a trace element in successive 
aliquots of melt during fractional melting. We do this by first cal-
culating the concentration of a trace element in the residual solid 

FIGure 3. Plots depicting behavior of dimensionless trace element concentration (Cm/Cm
o) vs. fm for fractional crystallization; φ = –0.08. In all 

plots, Ksf  = 1 illustrates system behavior for fluid-absent conditions. (a) Curves illustrating Cm/Cm
o trends for Ksm = 0.001 and Ksf of 10–6 to 1. (b) Ksm 

= 0.1 and Ksf of 10–4 to 100. (c) Ksm = 1.0 and Ksf of 10–3 to 1000. (d) Ksm = 3 and Ksf of 10–3 to 1000. Calculations stopped at fm = 0.05.
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(or bulk solid) and then use the definition of the solid-melt partition 
coefficient to compute the concentration in the melt aliquot as a 
function of the fraction of melt removed (fm). 

At any temperature, the multiphase mixture of crystals (s), 
melt (m), and supercritical fluid (f) sums to the total initial mass 
of the system. That is:

Ms + Mm + Mf = Mo
s + Mo

f   (23)
 

or in differential terms

dMs + dMm + dMf = 0.  (24)
 

For the ith trace element of mass mi, the analogous expressions are

ms,i + mm,i + mf,i =mo
s,i + mo

f,i = Co
s,i Mo

s,i + Co
f,i Mo

f,i (25)
 

and

dms,i + dmf,i = –dmm,i.  (26)

The subscript “i” refers to the ith trace element and is dropped 
hereafter; the superscript “o” refers to the initial conditions. To 
obtain the differential balance, allow for an increment of change 
in which a mass increment of a trace element is removed from 
the initial source material (solid plus fluid) by the removal of 
melt implied by fractional fusion. The concentration of a trace 
element in the melt is Cm at the moment of melt removal. Then 
Equation 26 can be cast as

d(CsMs + CfMf) = –dmm = –CmdMm  (27)

Now, if the definitions Cm = CsKsm
–1, Cf = Cs/Ksf, fs = Ms/(Ms

o + 
Mf o), fm = Mm/(Ms

o + M fo), ff = Mf /(Ms
o + M fo), and the identity fs + fm 

+ ff = 1 are substituted into Equation 27, the differential equation 
for the variation in the concentration of a trace element in the 
residual solid as a function of melt fraction removed becomes

dC
df

C K K
df
df

s

m
s sm sf

f

m

= − + −















− −( ) ( )1 11 1


− + −





−
−

1 11 1
f f Km f sf( ) .

(28)

Solution of mass-balance equation and error analysis
If Equation 28 is integrated and Cs is found as a function of 

fm and ff, then Cm can be computed from the relation Cm = CsKsm
–1. 

The integrated form of Equation 28 reduces to the usual expres-
sions (e.g., Shaw 1970) for the composition of residual solid and 
melts in fluid-absent fractional melting (see Appendix III). In the 
general case, Equation 28 must be solved numerically to account 
for variations in Ksm, Ksf, and dff /dfm during fluid-present partial 
melting as discussed earlier for isobaric fractional crystallization. 
These parameters are not generally constant across a wide range 
of melt fractions and need to be calculated self-consistently by a 
thermodynamic method such as the MELTS algorithm of Ghiorso 
and Sack (1995). In the simplified case in which Ksm, Ksf, and dff /dfm 
are constant, Equation 28 may be integrated analytically. Constant 
φ implies f f ff f

o
m= +φ  where ff

o  represents the mass fraction 
of fluid present in the system just below the solidus (i.e., when fm 

= 0, fs = fs
o, and ff = ff

o). Equation 28 may therefore be written:

dC
df

C K K

f f K
s

m

s sm sf

m f sf

=
− + −

− +

− −[( ) ( ) ]

( (

1 1

1

1 1 φ
−− −





1 1)
.  (29)

Equation 29 is integrated, subject to the initial condition that 
Cs = Cs

o  at fm = 0. The trace-element balance for the system at 
the solidus is

 
C C f K Ksys s

o
s
o

sf sf= − +( )− −( )1 1 1 , which allows for 
fluid fraction ff

o and fluid composition Cf
o = Cs

o/Ksf at the solidus 
prior to partial melting. For constant Ksm, Ksf, and φ, the com-
position of a trace element in the residue after fraction of melt 
fm has been removed is

C
C

K f K f
s

s
o

sf f
o

sf m=
− − + − −

− −

− −1 1 1 1

1 1
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 (30)

The corresponding expressions for the instantaneous melt 
composition (Cm) and the average of all melt increments (i.e., 
the aggregate melt composition, Ĉm) along the melting path from 
the solidus (fm = 0) to fm are

C
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K f K f
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The expression for the instantaneous fluid phase composi-
tion is
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The error introduced by neglect of trace-element partition-
ing into the fluid during fluid-present fractional melting is easy 
to compute. The fractional error in the concentration of trace 
element in the melt is

C C
C
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In Figure 4, which represents a case of 10% fractional melting, 
the absolute value of the percent error, incurred by assuming that 
fluid-phase, trace-element partitioning has no effect on the melt 
composition, is portrayed; calculation details are provided in 
the figure caption. Once again, it is clear that failure to account 
for partitioning of elements, especially if they are fluid soluble, 
results in melt concentration errors that are large. For example, 
an incompatible element characterized by a bulk solid-melt parti-
tion coefficient of Ksm = 0.01 exhibits a 40% error for Ksf = 0.1 
(somewhat soluble), and a 100% error for Ksf = 0.01 (soluble). 
Perusal of the data compiled in Electronic Appendix 1 (see also 
Fig. 8) indicates that, depending on the mineral assemblage of 
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the source (e.g., peridotitic, eclogitic, gabbroic, granodioritic, 
etc.), many elements fall into the category where the bulk Ksf < 
1, and in some cases, bulk Ksf is << 1. 

Graphical results
In this section, we show results based Equation 29, which 

gives the instantaneous composition of melts derived by frac-
tional melting. In the case of fluid-present melting, both ff

o (the 
initial mass of fluid) and φ are important. In Figure 5, melt 
compositions are plotted for trace elements spanning a range 
of geochemical behaviors, from highly incompatible (Ksm = 
0.001), moderately incompatible (Ksm = 0.1), to compatible (Ksm 
= 1, 3) for ff

o = 0.01 (e.g., 1% H2O in the source) and φ = –0.1. 
The calculation is run until the ff = 0, at which point the discrete 
fluid phase ceases to exist. For ff

o, this transition occurs at fm = 0.1 
(i.e., 10% melting). For each Ksm, a range of Ksf is shown, from 
highly soluble (10–5) to moderately insoluble (10). Examination 
of Figure 5a shows that for a highly incompatible element, Ksf 
values as large as 10–2 produce significant deviations from the 
fluid-absent case. For example, for Ksf = 10–2, the normalized 
concentration of trace element can be orders of magnitude higher 
after 2% melting, compared to the fluid-absent case. Recall that 
in the case of a highly incompatible element, for fluid-absent 
fractional melting, the element is efficiently stripped from the 
solid source as melting progresses. Thus, at very small degrees 
of partial melting, normalized concentrations can be quite high, 
but as melting progresses, concentrations decrease significantly. 
Figure 5a also reveals that in cases in which elements are more 
soluble (e.g., 10–3 or less), the deviation from fluid-absent be-
havior is significant. For example, at as little as 4% melting, the 
normalized concentration is significantly enriched, compared to 

the source initial composition (over an order of magnitude) and 
compared to the predicted composition in the fluid-absent case 
(many orders of magnitude). Thus, in cases where fluid-present 
melting occurs but is not correctly assessed, there is potential for 
gross misinterpretation of the character of the source(s) and/or the 
mechanisms of melting for elements that are soluble. Elemental 
behavior at the point of transition from fluid-present to fluid-ab-
sent is best shown in Figures 5b, 5c, and 5d. For highly soluble 
elements, these plots show that, compared to the fluid-absent 
case, normalized concentrations can be orders of magnitude 
higher at the fm at which ff → 0. For example, Figure 5b shows 
that the normalized concentration of a moderately incompat-
ible but highly soluble element will change by several orders of 
magnitude at the fluid-present, fluid-absent transition (i.e., 10% 
melting). These figures also underscore how trace-element ratios, 
so often used in geochemical and petrologic analysis, may also 
be impacted. For any two elements i and j that have similar Ksm 
but very different Ksf (i = soluble, j = insoluble), progressive 
melting will fractionate these elements (i.e., i/j will increase 
dramatically); analysis neglecting this effect leads to significant 
interpretative misunderstandings. These results highlight the 
critical need to correctly assess the trace-element effects of fluid 
partitioning during melting. 

Figure 6 illustrates results for the same parameters except φ 
= –0.2, which means twice as much fluid is removed for each 
increment of melt formation. The fraction of melt at which ff = 
0 is 0.05. In cases where Ksf is 1 or greater, φ = –0.2 has little to 
no impact on trace-element trends, compared to φ = –0.1 (e.g., 
compare results for Fig. 5 and 6, cases in which Ksf = 1, 10). For 
similar degrees of melting (at fm less than where ff = 0), the φ 
= –0.2 case generally yields normalized concentrations that are 
slightly higher than the φ = –0.1 case because, all other param-
eters being equal, more of the trace element has been transferred 
via the fluid when φ = –0.2. The critical issue to appreciate from 
Figures 5 and 6 is that the contribution that soluble elements 
make to the trace-element signature of partial melt during 
fluid-present melting must be properly characterized; otherwise, 
completely inaccurate conclusions may be drawn about source 
features and melting processes. Although not shown, results 
for integrated melt compositions (Ĉm), perhaps a more widely 
applicable geochemical model than perfect fractional melting, 
yield the same conclusion. 

SolId-FluId-Melt trace-eleMent partItIonInG: 
theory and experIMental data

A compilation of trace element mineral-fluid (Ksf) and 
fluid-melt (Kmf) partition coefficients from experimental stud-
ies is presented in Electronic Appendix 1. The compilation is 
representative, not exhaustive, and focuses upon recent studies. 
Most measurements have been made with pure H2O as the sol-
vent although a few studies have included dilute alkali halide 
aqueous fluids. Insofar as trace metal chloride species can be 
stable entities in aqueous solutions, the solubilty of some trace 
elements will depend significantly on chloride molality. The 
stability of such complexes at elevated conditions of pressure 
and temperature (e.g., at subduction zone depths) is largely 
unknown. Our purpose is to provide a summary that is useful 
for geochemical calculations involving common trace elements 

FIGure 4. Error analysis for fractional melting plots bulk Ksf vs. 
absolute value percent error in Cm, based on Equation 34. Results shown 
for fm = 0.10 (10% fractional melting); φ = –0.10; ff

o = 0.01 (i.e., source 
has 1% H2O); range of Ksm from 0.001 to 3. Stippled region denotes 
negative values of percent error (i.e., Cm

3Ψ < Cm
2Ψ). Note that percent error 

for Ksf = 1 is 0 for all Ksm. Thus, Ksf =1 yields solution that is equivalent 
to fluid-absent conditions. 
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found in important igneous phases. Potential mantle fluids span 
a wide range of compositions including water-rich fluids, con-
centrated brines, CO2-rich fluids, and second critical point fluids 
(e.g., Bureau and Keppler 1999; Kessel et al. 2005). Halogen 
and sulfur-bearing compounds (e.g., HCl, HF, SO2, H2S, COS, 
etc.) may also be important components of mantle and crustal 
fluids. Similarly, the oxidation state of the fluid is important 
because of its effect on the speciation of fluids in the system 
H-O-C-S-Halogens. With so much potential variability in fluid 
composition and fundamental ignorance of the thermodynamic 
and electrostatic properties of water-rich, carbonic, and second 
critical point fluids, we recognize that a simple set of partition 
coefficients serves only as a rough guide. Even the electrostatic 
properties of pure water, quantitatively the most significant vola-
tile constituent, are uncertain at conditions of high pressure and 
low temperature (900–1500 K) common in subduction environ-
ments. Despite the absence of a complete theory for calculation 
of the solubility of silicate, oxide, and other crystalline phases in 
geofluids at elevated temperature and pressure, some elementary 
considerations provide a means for rationalization of observed 
solid-fluid (Ksf) partition coefficients. The discussion presented 
here is most relevant to aqueous dipolar fluids for which the 
theory of electrolytes is most applicable. The thermodynamics 
of second critical point geofluids and the calculation of min-
eral solubility at elevated temperature and pressure represent 

important areas for further research. Here, only a brief synopsis 
is presented and a few generalizations made.

Water is an excellent solvent because its dipolar nature (high 
dielectric constant) permits solutes to exist as solvated positive 
and negative ions. The hydration or solvation shell of water mol-
ecules is essential in lowering the energy of the ions or polyions 
making dissolution reactions spontaneous although the degree 
of dissolution varies widely. The Gibbs energy of dissolution 
of a trace element in a solid is a balance of contributions from 
sublimation, ionization, and solvation (hydration). The individual 
contributions to the dissolution free energy can be appreciated 
by following the thermodynamic cycle implied by dissolution 
of a solid into its constituent ions or polyions. Consider Rb in 
alkali feldspar, RbAlSi3O8 where for brevity X– = (AlSi3O8)– is the 
quasi-polyanion. The dissolution reaction may be decomposed 
according to the thermodynamic cycle:

RbX RbX G

RbX Rb X G
s g sublimation

g g g ioniza

→

→ ++ −

∆

∆ ttion

g aq solvation

g aq solvati

Rb Rb G

X X G

+ +

− −

→

→

∆

∆ oon

s aqRbX Rb
______________________________

→ + ++ −X Gaq dissolution∆

FIGure 5. Plots depicting behavior of normalized trace element concentration (Cm/Cs
o) vs. fm for fractional melting; φ = –0.10 and ff

o = 0.01 (i.e., 
source has 1% H2O). In all plots, Ksf  = 1 illustrates system behavior for fluid-absent conditions. (a) Curves illustrating Cm/Cs

o trends for Ksm = 0.001 
and Ksf of 10–5 to 10. (b) Ksm = 0.1 and Ksf of 10–5 to 10. (c) Ksm = 1.0 and Ksf of 10–5 to 10. (d) Ksm = 3 and Ksf of 10–5 to 10. Calculations stopped at 
fm = 0.1 because this is the limit of fluid-present melting for this case. 
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The Gibbs energy of the dissolution reaction evidently in-
cludes contributions from sublimation, ionization, and solvation. 
The sum of the ionization and sublimation energies represents 
the lattice Gibbs energy of the crystalline solid containing the 
trace element. Hence ∆Gdissolution = ∆Glattice + ∆Gsolvation (Rb+, aq) 
+ ∆Gsolvation (X–, aq). The Gibbs energy of the dissolution reac-
tion is related to the equilibrium solubility of the trace element 
according to RT ln Ksf = ∆Gdiss. If activity coefficients are set to 
unity, then the equilibrium constant can be identified with the 
solid-fluid partition coefficient Ksf. 

The solubility of a trace element is determined by the rela-
tive balance of the lattice Gibbs energy and the Gibbs energy of 
ion solvation. The Coulomb-Born ionic model for a crystalline 
solid is a useful construct to establish the first-order role played 
by cation charge and size. In that model, the 0 K lattice internal 
energy is directly proportional to the charge of the cation and 
inversely proportional to the cation-oxygen bond distance and 
hence the cation ionic radius (∆E

z
r

cat

cat
0K ∝ ). The 0 K lattice internal 

energy is always positive and increases as the cation charge and 
size increase and decrease, respectively. The magnitude of the 
lattice Gibbs energy is smaller than the lattice internal energy 
because the entropy change associated with dissociation and 
sublimation is always positive. In general, a large positive lattice 
Gibbs energy will disfavor dissolution. In contrast, the solvation 
Gibbs energy of an ion is always negative. The Gibbs energy of 

hydration can be estimated from the Born model 
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where z is the cation valance, e is the electron charge, NA is 
Avogadro’s number, εo is the permittivity of free space, εr is the 
relative permittivity (dielectric constant) of H2O, and reff is the 
effective radius of the solvated (hydrated) ion or polyion. In the 
Born approximation, the solvent (i.e., H2O) is treated as a uni-
form fluid of constant relative permittivity (dielectric constant), 
and the ion is treated as a charged sphere of effective radius reff 
defined as the distance from the center of the ion to the center 
of the water dipole. The solvation radius is proportional to but 
larger than the ionic radius of the trace element (approximately 
proportional to the crystal ionic radius) and is a function of fluid 
density (or pressure) and temperature. At fixed temperature and 
pressure, the solvation Gibbs energy is strongly negative for 
small, highly charged ions in media of high relative permittivity.
The solvation Gibbs energy therefore scales as

 
∆G z

reff r
solvation
 ∝ −


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where εr is a function of pressure and temperature (e.g., Pitzer 
1983; Haar et al. 1984; Franck et al. 1990). Of the common spe-
cies in magmatic fluids, H2O offers the best solvent properties 
due to its relatively large dipole moment. Values for the relative 

FIGure 6. Plots depicting behavior of normalized trace element concentration (Cm/Cs
o) vs. fm for fractional melting; φ = –0.20 and ff

o = 0.01 (i.e., 
source has 1% H2O). In all plots, Ksf = 1 illustrates system behavior for fluid-absent conditions. (a) Curves illustrating Cm/Cs

o trends for Ksm = 0.001 
and Ksf of 10–5 to 10. (b) Ksm = 0.1 and Ksf of 10–5 to 10. (c) Ksm = 1.0 and Ksf of 10–5 to 10. (d) Ksm = 3 and Ksf of 10–5 to 10. Calculations stopped at 
fm = 0.05 because this is the limit of fluid-present melting for this case.
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permittivity of some polar and non-polar geofluids may be found 
in Franck et al. (1990) and in Dandurand and Schott (1992). 
Small amounts of non-polar volatiles (e.g., CO2 or CH4) can 
have a relatively large effect on the dielectric constant of the 
fluid mixture. For example, addition of 10 mol% CO2 to H2O at 
673 K and 0.1 GPa reduces the value of εr by a factor of three 
using the mixing rules of Looyenga (1965). This has the effect 
of decreasing the absolute value of the Gibbs solvation energy 
and hence reduces the trace-element concentration, other factors 
remaining constant. The higher the dielectric constant of a fluid, 
the better the neutralization of the force field between two atoms 
on the surface of the solid in contact with the fluid and hence, 
the greater its solubility. Scaling of solubility relations based on 
the Born solvation and Born-Coulomb lattice energy models out-
lined above gives log m r∝− −ε 1 , where m is the molality (moles 
of trace element per kg H2O) of the trace element and εr is the 
dielectric constant of the mixed fluid. This expectation can be 
tested using experimentally determined solute content of oxides 
in H2O and H2O-CO2 fluids measured by Schneider and Eggler 
(1986). They noted that the solubility of many cations in H2O-
CO2 fluids ( ww

f ≈ 0 9. ) in equilibrium with peridotites at ~2 GPa 
and 1100 °C is less by a factor of ~ 4 (from 12 wt% total solute 
to 3 wt% total solute) compared to those in pure H2O at the same 
conditions of pressure and temperature. The dielectric constant of 
pure water decreases with increasing temperature due to thermal 
randomization of oriented dipoles. In contrast, increasing pres-
sure favors ordering of dipoles and hence increases εr (Franck et 
al. 1990; Wasserman et al. 1995; Floriano and Nascimento 2004; 
Guàrdia and Marti 2004; Weingärtner and Franck 2005; Cai et 
al. 2005). Water, therefore, maintains its capacity to dissolve 
solids at depths along the geotherm and is an especially good 
solvent in “old” slabs at depth where temperatures are relatively 
low. The solubility of many trace elements in silicates and ox-
ides increases as the aqueous fluid becomes more chloride-rich 
(Keppler 1996), reflecting the effects of ion association (complex 
formation). Recall that seawater has an equivalent molality of 
~0.5 NaCl; many geologic fluids are considerably more saline. 
Further experimental work should address the issue of trace metal 
complex formation in chloride-bearing aqueous solutions. This 
may be very relevant to subduction zone magmatism.

From the point of view of trace-element geochemistry, the 
traditional way of assessing the solubilty of a trace element is 
to consider its field strength, defined

 

E
z
Rfs

cat

i

=
2 , where zcat is the 

charge of the cation and Ri is the ionic radius of the cation. In 
light of the complexities of the dissolution process, Efs is, at 
best, a rather crude way to systematize the solubility of trace 
elements in aqueous geofluids. In Figure 7, electric field strength 
is plotted for several elements arranged by atomic number us-
ing the compilation of Emsley (1991). One can distinguish four 
groupings of elements based on relative field strengths. The 
lowest-field-strength elements (which tend to be most soluble) 
are K, Rb, and Cs followed by Li, Na, Sr, Ba, and Pb, which in 
turn are followed by the Ca, Cu, Y, Mo, Sn, REE, Th, and U. 
Note that multiple oxidation states are shown for Ce and U. The 
high-field-strength elements include Be, B, Ti, V, Ni, Zr, Nb, Hf, 
Ta, and W. These elements are generally relatively insoluble 
except for the low atomic number elements Be and B, which 
have fairly low mineral-fluid partition coefficients for garnet- and 

clinopyroxene-fluid (Electronic Appendix 1). The anomalous 
high solubility of Be and B, despite their high field strengths, 
may be related to their small size and low coordination number 
with oxygen in crystalline silicates, low hydration numbers in 
aqueous solution, and the stability of oxide and halogen poly-
atomic ions involving Be and B.

Figure 8 summarizes values of Ksf for the minerals apatite, 
amphibole, micas, potassium feldspar, olivine, clinopyroxene, 
plagioclase, and garnet for all elements reported in Electronic 
Appendix 1. Recall that a low value of Ksf for a particular trace 
element implies that the element is relatively soluble in an H2O-
rich fluid. For mineral-fluid pairs in which multiple experimental 
results are available, we have plotted the geometric mean of all 
experimental values of Ksf for the given mineral-fluid pair. As 
an inset, we also show the minimum value of Ksf. For trace ele-
ments most relevant to problems in igneous petrology, Figure 
8 shows that elements Cs, Rb, Ba, Pb, Sr, Mo, Th, Tb, Yb, U, 
Ce, Be, and B are moderately to highly soluble in phases such 
as clinopyroxene, garnet, plagioclase, and olivine. Thus, when 
these phases are quantitatively important, assessment of the fluid 
role in crystallization and melting is critical. Although there are 
sufficient experimental data on values of Ksf to at least partly 
evaluate the role of solid-fluid and melt-fluid trace-element 
partitioning, more experiments are needed to fully characterize 
mineral-fluid partitioning under the range of pressure, tempera-
ture, and fluid composition conditions relevant to mantle and 
crustal processes. An aspect that is particularly important to 
note is that experiments have shown that elements can become 
increasingly soluble in more saline/chloride-rich fluids (e.g., Hol-
land 1972; Flynn et al. 1978; Keppler 1996; Reed et al. 2000). 
Because most of the experiments used to construct Figure 8 (see 
also Electronic Appendix 1) were run at low salinity or in pure 
water, this suggests that the solubility of many of these elements 
may be greater than shown here, thus underscoring the impor-
tance of including fluids in any trace-element evaluation. The 
minimum values marked on the inset to Figure 8 may therefore 
be more realistic when performing geochemical calculations. 
The experiments of Keppler (1996) illustrate this effect rather 
clearly and are plotted in Figure 9. He determined Ksf between 
clinopyroxene and pure H2O and between clinopyroxene and a 
5 molal (Na,K)Cl aqueous solution. For many elements, there is 
an order-of-magnitude difference in Ksf such that the solubility of 
a given trace element is greater in the chloride-bearing solutions 
compared to pure H2O. 

Figure 10 summarizes the geometric mean of the partition 
coefficient between fluid and melt (Kfm) for several melts, most 
of which are silicic. Most values of Kfm range between 0.01 and 
10. Based on the identity Ksm/Ksf = Kfm, values of Kfm ≥ 0.01 to 
0.1 will be significant for analysis of trace-element distribution 
during fractional crystallization and fractional melting. Thus, 
like results discussed above for Ksf, many elements (e.g., Rb, K, 
Ba, Sr, Li, Th) will be quantitatively partitioned into co-existing 
supercritical fluid. 

SuMMary and IMplIcatIonS

Expressions to calculate trace-element partitioning in solid-
melt-fluid systems subject to fractional and equilibrium crystal-
lization and melting are presented in this paper. In general, a 
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FIGure 7. Atomic 
number vs. electric field 
strength (×104). Electric 
field strength shown for 
multiple oxidation states 
for Ce (+3, +4) and U 
(+3, +4, +5, +6); single 
oxidation state shown 
for all other elements. 
Elements can be grouped 
into four categories of 
electric field strength. 
Note general correlation 
between solubility in 
aqueous fluid and low 
values of electric field 
strength. See text for 
discussion. 

FIGure 8. Solid-fluid partition coefficients (Ksf) for a range of elements, presented in order of increasing electric field strength, for the minerals 
apatite, amphibole, mica, potassium feldspar, olivine, clinopyroxene, plagioclase, and garnet. In cases where more than one datum is available, 
symbol represents geometric mean. Inset shows lowest Ksf for each mineral. Individual Ksf data, experimental conditions, and references can be 
found in Electronic Appendix 1. 
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FIGure 9. Elements in 
order of increasing electric 
field strength vs. ratio of Ksf 
in 5 M (Na,K)Cl solution 
to Ksf in pure water for 
selected trace elements in 
clinopyroxene. Data from 
Keppler (1996). Note many 
elements (e.g., K, Rb, Ba, Pb, 
Sr, U) experience an order-
of-magnitude (or greater) 
increase in solubility in the 
presence of chloride-bearing 
solution. Nb experiences 
almost no change, and Th and 
Ti become less soluble in the 
chloride-bearing solution. 

FIGure 10. Fluid-mineral partition coefficients (Kfm) for a range of compositions; most are silicic. In cases where more than one datum is available, 
symbol represents geometric mean. Individual Kfm data, experimental conditions, and references can be found in Electronic Appendix 1.
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coupled set of differential equations must be solved to model 
any process because the solubility of volatile components is 
dynamically partitioned between melt and fluid during phase 
transitions, and hence the variation of the fraction of fluid with 
fraction of melt is not a constant. For the limiting conditions of 
(1) constant partition coefficients (Ksf and Ksm); (2) H2O present 
as the sole volatile constituent; and (3) water solubility indepen-
dent of temperature and melt composition, we provide analytical 
solutions for instantaneous trace-element concentrations for 
solid, melt and fluid phases, and relevant average trace-element 
concentrations applicable to isobaric fractional crystallization 
and isobaric fractional and melting. Forward modeling results 
for the closed form solutions, informed by a compilation of Ksf 
and Kfm data (Electronic Appendix 1), clearly show significant 
differences between fluid-present and fluid-absent trace-element 
concentrations for soluble elements. Errors predicted for such 
element concentrations in fluid-present vs. fluid-absent cases can 
exceed 100% for geologically relevant scenarios. The range of Ksf 
and Kfm reported in the literature is large, and the magnitude of 
the effect of fluid-present crystallization and melting underscores 
the need that exists for additional Ksf and Kfm experimental mea-
surements and progress in the thermodynamic theory of element 
solubility at elevated temperature and pressure. Measurements 
of the dielectric properties of possible mantle and crustal fluids 
are especially pertinent.

Although in this paper we have focused on providing the 
equations and partition coefficient data to address fluid-present 
trace-element calculations for melting and crystallization, the 
broader implications of our results are critical to appreciate. Since 
the formalism for quantifying the role of trace elements (Gast 
1968; Schilling and Winchester 1967) was elucidated decades 
ago, trace-element concentrations and ratios have been used to 
both qualitatively and quantitatively describe magma-chamber 
processes (e.g., fractional crystallization, assimilation, recharge), 
melting processes (e.g., fractional, dynamic, continuous, equi-
librium), character of source (e.g., source heterogeneity, plume 
structure), and involvement of various reservoirs or components 
in the origin of particular types of magmas (e.g., contributions 
from subducted lithosphere, continental crust, asthenosphere). It 
is also clearly established that many magmas are fluid-saturated 
for at least part of their history. Equations and analysis presented 
here yield the conclusion that in cases where interpretations de-
rive from elements that are soluble, such as Rb, Ba, Sr, Th, U, Pb, 
and possibly even the REE, serious potential misinterpretation 
about source(s), processes, and even timescales (e.g., U-Th-Ba 
disequilibria) may result by not properly incorporating trace 
element behavior of fluid-saturated systems. Addition of these 
equations to the trace-element geochemist’s “tool box” would 
seem to be a critical and essential step forward in the ongoing 
effort to provide sound and holistic, thermodynamically based 
descriptions of magmatic systems. 
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appendIx I
In this appendix, we show that Allègre et al. (1977) made the 

approximation of neglecting the presence of the fluid phase in the 
material balance expression for trace-element partitioning between 
melt, fluid, and solid. The derivation of their result begins on p. 64 of 
Allègre et al. (1977). Because their equations are not numbered, we 
have assigned them sequential labels (A, B, C, ...) for reference. We 
use the variable symbols defined in our paper since there is a one-
to-one mapping with those used by Allègre et al. (1977). Numbered 
equations are those derived in the text of this paper. 

Equations B and C represent definitions of the partition coef-
ficients applicable when crystallized solids and exsolved fluids 
are fractionated from the melt. The expressions are

dm
dM

K
m
M

f

f
fm

m

m

=    (B)

and

dm
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K
m
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s

s
sm

m

m

= .   (C)

Recall that Cm = mm/Mm and that lower case refers to the mass 
of a trace element and upper case refers to the mass of a phase. 
Subscripts s, f, and m refer to solid, fluid, and melt phases, respec-

tively. Now, Allègre et al. (1977) followed Holland (1972), and 
assume that the solubility of the volatile component (e.g., H2O) in 
the melt is constant. For isobaric fractional crystallization, this is 
only approximately valid. Although temperature and melt compo-
sition (and hence the solubility of H2O) change during fractional 
crystallization, the largest effect on water solubility is pressure, 
a constant during isobaric fractionation. The more-precise way 
to handle this issue is to couple a phase-equilibria model (such 
as MELTS, Ghiorso and Sack 1995) to the trace elements. For 
purposes of illustration in this Appendix, we accept this approxi-
mation. Allègre et al. (1977) Equation D on p. 64 reads

dMf = –GdMm    (D)
 

where we have added a minus sign to the right hand side (RHS) 
of their expression since G, the water solubilty, is positive and 
dMm is negative during crystallization when fluid is exsolved (i.e., 
dMf is positive). Equation D implies (if we assume that melt is 
water saturated) that as crystallization proceeds and the mass of 
melt (Mm) decreases by increment dMm, the mass of fluid phase 
Mf increases by –G dMm. Equation D does not hold exactly if 
crystallizing solids contain structural H2O or hydroxyl although, 
unless copious amounts of hydrous phase fractionate, the bulk 
of the H2O remains in the melt rather than in coexisting solid(s). 
The total amount of a trace element taken out of magma is (top 
of p. 65)

–dmm = dms + dmf.   (F)

That is, a trace element is removed by crystallization of solid 
and exsolution of fluid.

Substitute B and C into F and find
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Now substitute D into AI-1 and find
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Allègre et al. (1977) did not give Equation AI-2. Instead, the 
final result they gave is

dm K K G m
dM
Mm sm fm m

m

m

= +( ) . (G)

The only way to get from Equation AI-2, which is formally 
correct, to the result of Allègre et al. (1977) is to ignore the 
presence of the fluid phase. That is, to go from Equation AI-2 
to Equation G, Allègre et al. (1977) assumed by neglecting the 
mass of the fluid phase that Ms + Mm = Mtotal. Then one finds dMs 
= –dMm and Equation AI-2 becomes

dm K
m
M

G dM K
m
M

dMm fm
m

m
m sm

m

m
m= + , (AI-3)

 
which is identical to Equation G of Allègre et al. (1977). How-
ever, the total mass balance is not Ms +Mm= Mtotal as assumed by 
Allègre et al. (1977), but instead Ms + Ms + Mf = Mtotal. This latter 
form is the one used in this study. Finally, we point out that Al-
lègre et al. (1977) clearly recognized the approximate nature of 
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their derivation. On p. 65 immediately below their derivation they 
say “Note that the gas phase is not considered as an additional 
phase.” The derivation we present in the text explicitly allows for 
the presence of the fluid phase and hence differs fundamentally 
from that presented by Allègre et al. (1977). 

appendIx II
We show in the text that treating the fluid phase as the equiva-

lent of another solid phase is a special case of the general treatment 
of simultaneous solution to Equations 10 and 13. In the case of 
solid–melt crystal fractionation involving multiple simultaneously 
fractionating phases at an invariant point where the mass ratios of 
fractionating solids are constant, the procedure is to define a phase 
mass-weighted partition coefficient (the bulk partition coefficient) 
and to use the analytical form of the Rayleigh fractionation expres-
sion. Consider crystal fractionation of an n+2 phase system made 
up of n solids (s1, s2, ... sn), a fluid phase, and a melt phase. The 
expression analogous to text Equation 11 is

d C
d f

K K K
df
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m
s m s m s m

s
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ln
ln
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(AII-1)

Partition coefficients are defined in the usual way; note that 
Kfm = Cf /Cm =

 

K
K

sm

sf

. Here we explore the implications of treating 
melt-fluid trace-element partitioning identically to the way one 
treats solid-melt partitioning when multiple crystalline phases are 
present. To proceed, the total derivatives appearing on the RHS 
of Equation AII-1 must be determined. This is accomplished by 
noting that fm is a function of the mass fractions of all n solids 
(fs1, fs2, ...fsn) and the fluid phase (ff):

f F f f f fm s s sn f= ( , ,... , )1 2   (AII-2)
 

and then expanding in differential form:
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The mass-balance relation gives the condition:

f f f
n

f mϕ
ϕ=
∑ + + =

1

1   (AII-4)
 

where ϕ is summed over all crystalline phases. From Equation 
AII-4, values for the partial derivatives are found:
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Combining Equation AII-3 and Equation AII-5, the needed 
total derivatives are found:
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For the bulk partition concept to apply, the ratios of all fraction-
ating phases (including the fluid phase) are in constant proportion 
to one another. That is, the following conditions must hold:

fs2/fs1 = Z2, fs3/fs1 = Z3, … fsn/fs1 = Zn and ff /fs1 = constant = Zf.
  (AII-7)

The Z’s are all constants in Equation AII-7. The derivatives 
required for evaluation of Equation AII-1 are determined using 
Equations AII-6 and AII-7 and are 
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The derivatives in Equation AII-8 are all constant. This 
means that the term inside the square brackets of Equation 
AII-1 involves only the ratios of the mass fractions of the frac-
tionating phases (including the fluid) and the constant partition 
coefficients. Hence the RHS of Equation AII-1 is a constant and 
can be written in the KB – 1 form when the fluid phase is treated 
identically to any other phase present but with the appropriate 
partition coefficient Kfm. How does this treatment relate to the one 
developed in the text? In particular, under what circumstances are 
the two forms equivalent? Because it is assumed that the ratios 
of all fractionating phases are in constant proportion, Equations 
AII-4 and AII-7 imply that

f Z Z Z f Z Zf f sn m f= + + + + − + + +− − −[ ( ... )] [ (1 1 1 11
2

1 1
2 .... )]+ −Zsn

1

.
(AII-9)

Equation AII-9 can be differentiated and rearranged to give 

df
df

Z
Z Z Z

f

m

f

sn

=
−

+ + + +1 2 3 ...
. (AII-10)

Equation AII-10 can be compared to Equation 13 from the 
text. Clearly, these two equations are different because the RHS 
of Equation AII-10 is strictly a constant whereas this is not the 
case for text Equation 13.

As noted in the text, dff /dfm must be computed according to 
an internally consistent phase-equilibria model (e.g., MELTS). 
In the simpler case when H2O is the sole volatile component and 
when the solubility of water is constant independent of tempera-
ture and melt composition, then the approximation dff /dfm = -Sw = 
φ holds where Sw, the solubility of water in the melt, is constant. 
In this case, and only in this case, one finds
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Zf = (1 + Z2 + Z3 + … + Zsn)Sw. (AII-11)

That is, the two models are equivalent provided the ratio of 
the mass fraction of fluid to the mass fraction of solid number 1 
is related to the constant water solubility and the mass ratios for 
the other solids according to Equation AII-11. 

appendIx III
The following derivation illustrates that the fluid-present 

fractional melting equations reduce to the classical Rayleigh 
equations in the fluid-absent case. When no free supercritical 
fluid phase is present during fractional melting, the following 
conditions are applicable: Ksf → ∞, Ksf

–1 → 0, dff /dfm = 0 and ff = 
0. Hence Equation 28 assumes the form:

dC
df

C K
f

s

m

s sm

m

=
−
−

−[( )]
( )

1
1

1

.  (AIII-1)

Equation AIII-1 is integrated according to
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. (AIII-2)

This leads to the final form for the concentration of a trace 
element in the residual solid:

C
C

fs

s
o m

Ksm= −
− −( )( )1

1 1 . (AIII-3)

Using the definition of the solid-melt partition coefficient, Ksm 
= Cs/Cm, the instantaneous concentration of a trace element in the 
melt when the melt fraction fm has been removed is:

C
C

K fm

s
o sm m

Ksm= −− −−1 11
1

( )( ) . (AIII-4)

This result is identical to the form given in standard references 
such as Shaw (1970) or Albarède (1995) for the composition of 
fractional melt in solid-melt systems with constant partition coef-
ficient. The fluid-present expressions are clearly a generalization 
of the more-limited case of fluid-absent fractional melting.

appendIx Iv
Expressions for the instantaneous and average compositions 

of solids, melt, and fluid in equilibrium crystallization and equi-
librium melting in the presence of a free fluid phase are derived 
here. Although these cases have solutions for solid-melt systems 
(i.e., fluid-absent conditions), the valid expressions for fluid-pres-
ent conditions, to our knowledge, have not been derived. 

Shaw (1978) presented an analysis of trace-element behavior 
during fluid-present anatexis. His model was based upon the as-
sumption that, during progressive fractional fusion, the ratio of 
fluid mass to residual solid mass (Mf /Ms = ff /fs) remains constant. 
This is clearly not the case: the effect of fractional melting, in fact, 
is to strongly dehydrate the residue because water is quite soluble 
in silicate melts, especially at elevated pressure. Consequently, 
although of historical interest, the treatment of Shaw is not ap-
plicable to fluid-present anatexis. Similarly, we are not aware 
of any general treatment of equilibrium crystallization in the 
presence of a fluid phase. It is therefore useful to provide explicit 
expressions for the trace-element concentrations in solid, melt, 

and fluid relevant to equilibrium partial melting and crystalliza-
tion under isobaric conditions. Closed form solutions exist only 
for constant Ksm and Ksf. In the more-realistic case with variable 
partition coefficients, one must employ numerical solution of the 
relevant differential equations in consort with phase-equilibria 
computations (e.g., MELTS, Ghiorso and Sack 1995).

Fluid-present equilibrium crystallization
During equilibrium crystallization in the presence of a fluid 

phase, the melt, fluid, and solid maintain mutual equilibrium. 
The differential balance written in terms of the mass fractions 
of melt, solid and fluid is

d(Csfs + Cmfm + Cfff) = 0. (AIV-1)

Using the definitions of Ksm and Ksf and the total mass bal-
ance ff + fm + fs = 1, one finds for the composition of the melt, 
solid, and fluid:
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In equilibrium crystallization, the average composition of 
melt, solid, and fluid always equals the instantaneous composi-
tion.

Fluid-present equilibrium melting
Fluid-present equilibrium melting is closely related to fluid-

present equilibrium crystallization. One small difference is that 
the initial condition in equilibrium melting involves specification 
of the fraction of fluid present at the solidus. The differential 
balance is 

d(Csfs + Cmfm + Cfff) = 0.   (AIV-5).

Using the definitions of Ksm and Ksf, the total mass balance 
ff + fm + fs = 1, and recognizing that the concentration of trace 
element in the system (Csys) is constant during progressive fusion 
and equal to
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sf= − +− −[( ) ]1 1 1 , the expressions for 
the melt, solid, and fluid concentrations are
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Like equilibrium crystallization, there is no distinction be-
tween average and instantaneous concentrations. 


