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Compositional heterogeneity in the form of continuous or discontinuous chemical and thermal gradi- 
ents in lava and/or pyroclastic flows is very common. An understanding of the dynamics of magma 
withdrawal is essential to palinspastic reconstruction of intensive variable gradients in magma reservoirs. 
Important parameters governing the extent of subterranean magma mixing triggered by an eruption 
include the vertical structure of density and viscosity within the chamber, the discharge, the size and 
shape of the chamber, and whether eruption takes place along a sublinear fissure, a ring fracture, or a 
central vent. A numerical model has been set up to study isoviscous magma withdrawal from a central 
vent conduit as a function of the Reynolds number, the reservoir to conduit width ratio, reservoir aspect 
ratio (width/depth), and differing kinematic boundary conditions. Both open (magma recharge) and 
closed (caldera collapse) system behavior are considered. Finite difference solutions to the vorticity 
transport and Poisson equations enable determination of vorticity, stream function, and velocity fields as 
a function of time. The most petrologically significant output is the stream function (particle trajectories) 
and evacuation isochron diagrams. An evacuation isochron represents the locus of points within the 
chamber such that magma parcels along a given isochron arrive at the bottom of the volcanic conduit 
concurrently. Open systems evolve toward a time invariant state (fully developed flow). Spin-up times 
depend on chamber aspect ratio (B,/D,), reservoir/conduit width ratio (B,/Bc), and Reynolds number 
(Re). B,, D,, and Bc represent chamber half-width, depth, and conduit half-width, respectively. Spin-up 
times are relatively small (1/10 to 1/5) fractions of typical eruption durations. The shape and orientation 
of evacuation isochrons (EI) depend on Re (increasing Re decreases withdrawal depth) and geometric 
factors (increasing B,/Bc at constant Re and B,/D, or decreasing B,/D, at constant B,/B• and Re 
increases withdrawal depth). A significant amount of roofward magma can remain untapped in a 
chamber even for long duration eruptions. Systems driven by caldera collapse also involve juxtaposition 
of roofward and deep-seated magma during the course of an eruption. Relative to the magma recharge 
(open system) situation, EI's are laterally elongated. The extent of vertical mixing is thus smaller al- 
though still significant in this case. Maximum withdrawal depths vary monotonically in both cases. 
There is excellent qualitative agreement between predictions based on the numerical experiments and 
Fe-Ti oxide temperatures for a thermally zoned ash flow deposit south of Mono Lake in eastern 
California (Bishop Tuff). 

INTRODUCTION 

It is a widely held view that the products of many volcanic 
eruptions represent the rapid and partial evacuation of large 
subjacent magma reservoirs situated within the crust. In many 
cases, eruptive products exhibit continuous or discontinuous 
changes in geochemistry, mineralogy, crystallinity, temper- 
ature, and inferred volatile content during the course of a 
single eruption. These variations may be mapped by densely 
spaced sampling of well-exposed and continuous vertical sec- 
tions. For large-volume (V > 102 km 3, dense rock equivalent 
(DRE)) silicic ash flow deposits, careful studies usually reveal a 
systematic increase in the concentration of mafic components, 
temperature, crystal content, and magma density and a corre- 
sponding decrease in H20, SiO2, and other components strati- 
graphically upward [Smith, 1960, 1979; Smith and Bailey, 
1966; Lipman, 1967; Hildreth, 1979, 1981]. Small- to 
intermediate-volume silicic ash flow deposits often show simi- 
lar intradeposit patterns, sometimes with the additional fea- 
ture of discontinuous changes in magma bulk composition (a 
compositional gap) at some specific stratigraphic height. 
Classic examples include the eruption of Mount Mazama 
(V • 40 km 3 DRE) [Williams, 1942; McBirney, 1968; Ritchey, 
1980; Bacon, 1983], the P1 composite alkali rhyolite to alkali 
basalt ash flow (V • 20 km 3 DRE) on Gran Canaria, Canary 
Islands [Schmincke, 1969, 1972; Crisp, 1983, 1984], the 1912 
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eruption at Novarupta (V • 15 km 3 DRE) [Curtis, 1968; Hil- 
dreth, 1983], and the 1707 eruption of Mount Fujii (V • 1 
km 3 DRE) [Tsuya, 1955]. Although much less common, erup- 
tions from intermediate to basaltic centers may also exhibit 
monotonic variations in geochemistry, mineralogy, or pheno- 
cryst abundance during the course of a single eruptive cycle. 
The 1971 eruption of Volcano de Teneguia on the island of La 
Palma (Canary Islands, Spain) is a good example of a zoned 
basaltic eruption [Santin et al., 1974]. The late Quaternary 
Laacher See phonolitic tephra deposit (Eifel, W. Germany), 
described by Worner and Schmincke [1984], is a well- 
documented example of mineralogical and chemical zonation 
in an intermediate-composition system. 

The simplest way to interpret the ubiquitous occurrence 
of compositional and thermal zonation and multiple pumice 
populations in volcanic deposits from single or closely related 
eruptions is to postulate the existence of a vertically zoned 
magma chamber. The realization that volcanological and geo- 
chemical studies can be used to reconstruct the pattern of 
compositional and thermal zonation within a magma chamber 
is, perhaps, one of the major advances in petrology within the 
past two decades. This idea has generated interest to students 
of magmatic transport phenomena, as an understanding of 
how and at what rate compositional and thermal gradients 
develop in a chamber is inextricably bound to the larger 
question of the dynamics of multicomponent-multiphase con- 
vection within a rheologically complex viscous fluid. Clearly, 
solution of this transport problem promises rich rewards that 
may be important within the larger context of planetary vol- 
canism and crustal evolution. 
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Fig. 1. Schematic portrayal of magma evacuation from a large 
chamber into a narrow central vent conduit. Times after initiation of 

the eruption (t = 0) are marked on two of an infinite number of 
evacuation isochrons. In the time interval t2-t •, magma initially lying 
between the two isochrons will simultaneously arrive at the bottom 
entrance of the volcanic conduit (point E). At position F the volume 
fraction of vapor in the magma is sufficiently large that the flow is in 
the compressible (high speed) regime where Mach numbers exceed 0.4 
approximately. Due to the high-speed turbulent nature of flow in the 
pipe, local mixing can be very efficient. Magma parcels located at, say, 
points A and B will be intimately mixed before they reach the vent 
(point V). 

However, before field and laboratory data can unambigu- 
ously be utilized in the reconstruction of preeruptive gradients 
within a chamber, one must understand and allow for compli- 
cated mixing effects that may occur during the eruptive pro- 
cess. Most simply, one may consider mixing to occur in either 
the subaerial or subterranean realm. Subaerial mixing of a 
pyroclastic flow could occur either within the vertical eruption 
column or later during lateral transport immediately preced- 
ing emplacement. Although subaerial mixing undoubtedly 
occurs during a pyroclastic eruption, it is important to note 
that the time interval a magma parcel spends in the subaerial 
realm before cessation of movement is usually very short (typi- 
cally 102 s) compared with the duration of an eruptive episode 
(typically 104-10 s s). Consequently, despite the turbulent 
nature of column collapse and lateral transport, the extent of 
vertical mixing during the subaerial phase remains restricted. 
If this was not the case, vertical compositional zonation within 
ash flow deposits would be rare. The common occurrence of 
vertical compositional zonation indicates that the vertical 
scale of subaerial mixing is significantly less than the thickness 
of the deposit. 

Subterranean mixing is defined here as the mixing that 
occurs due to the juxtaposition of magma parcels initially at 
different depths within the chamber. Mixing occurs in re- 
sponse to magma withdrawal and upwelling through a con- 
duit of much narrower dimension than the larger subjacent 
reservoir. The most petrologically significant aspect of this 
process is that magma from many different depths will arrive 
concurrently at the entrance of the magma conduit (point E, 
Figure 1) and may therefore become mixed before reaching 
the vent (point V, Figure 1). The scale of mixing, that is, 
whether intimate blending of magma or formation of compo- 
sitionally banded pumice occurs, depends mainly on the vis- 
cosity ratio of the two magmas. Even if no subaerial mixing 
occurs, the stratigraphy of a deposit will not represent the 
simple inverse zonation within the preeruptive chamber. In 
order to reconstruct the pattern of preeruptive zonation 
within a chamber, the magmadynamic withdrawal process 
should be explicitly accounted for. 

It is the purpose of this note to qualitatively discuss the 

important parameters governing the relationship between an 
erupted magma parcel and its sites of origin within a reservoir 
and to develop a numerical algorithm applicable to the with- 
drawal of magma from a large reservoir through a central vent 
conduit. The numerical simulations reported on herein are 
based on solution of the conservation equations applicable to 
eruption of incompressible, constant viscosity magma from a 
large reservoir. The present study is a logical first step in 
understanding the fluid dynamics of magma withdrawal rele- 
vant to complex natural systems. 

The method of solution utilized for the numerical simula- 

tions allows the calculation of the transient history of the 
evacuation process at arbitrary Reynolds number within the 
laminar regime. This is preferable to obtaining only the steady 
state solution for several reasons. First, the spin-up time for 
evacuation from a voluminous chamber may be a significant 
fraction of the duration of the entire eruption. Even for a fixed 
discharge eruption, the velocity field within the reservoir is 
time dependent, and so the mixing history will also vary tem- 
porally. Second, for the important case where caldera collapse 
occurs during an eruption, steady flow within the chamber can 
never really be achieved because of the motion of the sinking 
caldera roof. Finally, because of the wide range of discharges 
and transport properties characterizing volcanic eruptions, no 
single Reynolds number is necessarily applicable in all cases. 
Calculations have been carried out therefore for a range of 
Reynolds numbers between the creeping flow (Re-+ 0) and 
subinertial (Re ~ 10 a) regimes. 

The most important petrological output of the numerical 
model is the generation of evacuation isochrons for a specific 
set of geometric, transport, and boundary conditions. These 
isochrons represent the locus of points in two-dimensional 
space such that magma parcels along a given isochron arrive 
at the entrance of the volcanic conduit concurrently. In terms 
of reconstructing intensive thermodynamic fields in a chamber 
by surface observation alone, the evacuation isochron diagram 
is clearly of great significance. 

MAGMA WITHDRAWAL: QUALITATIVE ASPECTS 

A large number of factors govern the relationship between 
an erupted magma sample and its site of origin within the 
chamber. For the purposes of discussion, these factors are 
grouped into the following categories: chamber-conduit geom- 
etry, magma transport properties, and dynamic regimes. 

Geometric Factors 

Important geometric factors include the size and shape of 
the magma reservoir, the relative dimensions of the reservoir 
and conduit system, and the style of eruption (e.g., ring frac- 
ture, fissure, or central vent eruption). In general, there are 
poor constraints on the sizes and shapes of magma chambers, 
although in certain specific instances, inferences have been 
drawn [e.g., Ryan et al., 1983]. Chambers from which vol- 
uminous ash flow sheets originate probably have cross- 
sectional areas on the order of caldera collapse areas and may 
have relatively flat roofs [Smith, 1979; Spera and Crisp, 1981]. 
Smaller volume chambers from which less voluminous ash 

flows are erupted may have conical or pitched roofs [McBir- 
ney, 1980]. Based on observed sizes and shapes of large meso- 
zonal to catazonal plutons, it has been suggested that during 
catastrophic ash flow eruptions, less than about 10% of the 
volume of the chamber is evacuated [Smith and Shaw, 1973, 
1975]. Because of uncertainties regarding chamber shape, a 
simple flat-topped rectangular shape has been assumed here. 
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Although the numerical model could easily incorporate other 
shapes, there is no compelling reason to do so at this time. 

The conduit width and the conduit/reservoir width ratio 
will also influence the style of magma drawdown. For the 
simple case of inviscid slow motion in a two-layer stratified 
fluid of infinite lateral extent, Rouse [1956] found a depen- 
dence of the critical discharge on the diameter of the conduit 
as well as the thickness of the low-density fluid layer (see 
Figure 2). In this case, because the effects of viscosity are 
ignored and the geometry is very simple, the minimum dis- 
charge O such that the lower layer will be tapped may be 
approximately determined. As given by Turner [1973], the 
condition for lower layer tapping is 

Qerit •- 6.4 h e (1) 

where g'--g(Px- Pe)/P• and h, 2B½, and Q represent the 
thickness of the upper layer, the pipe diameter, and the dis- 
charge, respectively. From (1) it is noted that there is a weak 
dependence of the critical discharge on the conduit width. For 
example, with 2B½ = 10 m, the minimum discharge to ensure 
tapping of the denser lower layer is 6 x 10 '• m3/s; with Be = 
100 m, Q assumes the value 1.8 x l0 s m3/s. In both cases the 
values of h, Px, P2, and g are 500 m, 2700 kg/m 3, 2600 kg/m 3, 
and 9.8 m/s 2, respectively. Note that these discharges are 
within the range appropriate to pyroclastic eruptions [e.g., see 
Settle, 1978, Table 1; Wilson et al., 1978, Table 3; Sparks et al., 
1978; Wilson, 1976]. 

A final important geometric factor involves the conduit 
type. Whether an eruption takes place from a curvilinear ring 
fracture (or portion of one), a linear fissure (e.g., Hawaiian 
type rift zone), or a central vent conduit will affect the style of 
magma withdrawal because of differing kinematic boundary 
conditions. In this context it is important to note that conduit 
locations can change even during the course of a single erup- 
tion. Bacon [1983], for instance, has shown how the climactic 
eruption of Mount Mazama 6800 years B.P. began as a cen- 
tral vent eruption (V • 30 km 3 DRE) and then changed to a 
ring fracture phase (V • 15 km 3 DRE) that was associated 
with caldera collapse. In this study, attention will be focused 
on central vent type eruptions. The Taupo ignimbrite recently 
described in detail by Walker [1980] and Walker and Wilson 
[1983] is a good example of a silicic ash flow deposit erupted 
from a central vent. 

Transport Properties 

Intuitively, one expects that both magma density and vis- 
cosity and their variation within the chamber (i.e., continuous 
variation or discrete layers) will play a role in the details of the 
withdrawal process. As noted from (1), in a density layered 
system, the greater the density contrast, the larger the imposed 
discharge must be to ensure tapping of the lower layer. In a 
compositionally zoned chamber, high-viscosity, low-density 
magma will commonly overlie less viscous but denser materi- 
al. Although no detailed analysis has been carried out, it 
seems sensible that for a layered system with a given density 
contrast, as the magnitudes of the viscosities become more 
disparate, there would be greater tendency for tapping of the 
lower layer. This would especially be true in the case of a 
chamber of wide lateral extent. For the small chamber the 

supply of low-density roofward magma would more quickly 
become depleted. It might be expected therefore that small- 
volume systems would tend to tap deeper melts more readily. 
As noted earlier, this seems consistent with volcanological ob- 

Fig. 2. Geometry of two-layer withdrawal problem, modified 
from Turner [1973]. For this simplified (inviscid) analysis, a minimum 
discharge rate Q must be specified in order that the deeper layer be 
drawn up into the conduit. The greater the conduit width, the greater 
the discharge needed for tapping of the lower layer. See text for 
discussion. 

servations. Numerical simulations reported here support this 
view (Figure 8). 

Dynamic Regimes 

As shown in a later section, for a fixed reservoir-conduit 
geometry, the only important dynamic variable in the con- 
stant viscosity withdrawal problem is the Reynolds number. 
The Reynolds number (Re) is defined for the central vent case 
according to 

Re = 3pQ/8Bcr I (2) 

where p, •1, Bc, and Q represent the magma density, viscosity, 
conduit radius, and volumetric discharge, respectively. The pa- 
rameters Q, r/, and Bc can each vary quite widely in nature. 
Measured or inferred discharge rates for basaltic eruptions 
commonly vary from 10 to 10 '• m3/s [Delaney and Pollard, 
1982; Wadge, 1981, 1982], whereas for silicic caldera-forming 
eruptions, Q typically lies in the range 10•-106 m3/s. Basaltic 
magma viscosities may be as low as 1 Pa s at liquidus temper- 
atures; high-silica rhyolitic magmas have viscosities as high as 
l0 s Pa s. Finally, conduit widths vary in diameter in the ap- 
proximate range 1-102 m [Erken and Byers, 1976; Shaw and 
Swanson, 1970] with wide conduits being associated in general 
with more silicic compositions. Based on this range of parame- 
ters, it is noted that Re may vary by several orders of mag- 
nitude, from creeping flow (Re--} 0) to values on the order of 
10 •. Of significance here is that for a fixed time interval after 
initiation of an eruption, the maximum depth of withdrawal 
varies inversely with Re. This phenomenon is quantitatively 
explored in a later section. 

PREVIOUS WORK 

The flow of viscous fluid from a wide channel or reservoir 

through an abrupt contraction into a narrower pipe is a classi- 
cal fluid dynamic problem that has attracted much attention 
since the first recorded observations of eddy formation by 
Leonardo da Vinci [Rouse and lnce, 1963]. Because of severe 
mathematical difficulties associated with the nonlinear 

character of the conservation equations, no closed form ana- 
lytical solutions have been obtained. Within the last two dec- 
ades, however, powerful numerical methods have been devised 
and applied to the unsteady flow of incompressible fluids. The 
numerical codes developed by Fromm [1964, 1965] and Simuni 
[1964] are among the earliest and most general ones pro- 
posed, although neither of these workers systematically ad- 
dressed the sudden contraction problem in terms of variations 
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Fig. 3. Two models consistent with magma effusion at discharge 
Q. In the magma recharge case, the floor of the chamber is permeable 
with respect to basic magma injection. In caldera-collapse case, the 
floor is impermeable; efflux is balanced by chamber roof collapse 
(caldera subsidence). 

in Re, geometry, and particle trajectories relevant to magma 
evacuation. Kawaguti [1965] studied steady viscous flow in a 
channel with a forward (sudden contraction) or backward 
(sudden expansion) facing step up to Re ~ 64 but at a fixed 
width ratio of 2. Similarly, Giaquinta and Hung [1968] studied 
steady flows of incompressible, non-Newtonian fluids in a 
two-dimensional conduit expansion for Reynolds numbers be- 
tween 0 and 16 and a fixed channel diameter ratio of 2. Their 

work was mainly concerned with a systematic study of eddy 
characteristics and pressure losses as a function of power law 
index. They found that the departure from Newtonian behav- 
ior decreased as Re increased and that this decrease was much 

greater for dilatant than pseudoplastic fluids. Other workers, 
including Dennis and Smith [1980], Holstein and Paddon 
[1982], and Peyret and Taylor [1983], have focused attention 
on the flow in the neighborhood of a reentrant corner at low 
Re number, again for an entry/exit width ratio fo 2. 

In a volcanological context the only previous work done on 
this problem is the study by Blake [1981]. He applied the 
approximate analytic solution of Weissberg [1962] to obtain 
the velocity field within a large flat-topped reservoir from 
which a constant viscosity fluid moves radially into an exit 
conduit. The solution is for steady state flow in the creeping 
flow (Re--} 0) regime and is based on an approximate vari- 
ational technique. An important contribution of his work was 
the determination of what are called here evacuation iso- 

chrons. These dearly show that in the region below the orifice 
and extending laterally, juxtaposition of magma initially at 
distinct depths occurs during withdrawal. 

MODEL 

General Features and Assumptions 

In light of inherent limitations in the aforementioned stud- 
ies, this work was initiated to study the topology of evacu- 
ation isochrons as a function of Re, the reservoir/conduit 
width ratio, unsteady effects, and boundary conditions. 
Boundary conditions were chosen to simulate either caldera 
collapse or open-system behavior (Figure 3). In the caldera 
collapse version, magma effiux through the central vent con- 
duit is balanced by collapse (downward movement) of the 
chamber roofi The open-system model is characterized by 
magma recharge through the "floor" of the chamber sufficient 
to offset the constant discharge through the exit conduit. The 
caldera collapse model is probably most relevant to large- 
volume intermediate to silicic composition pyroclastic erup- 
tions, which in fact, are commonly associated with caldera 
collapse. The recharge model, on the other hand, may be more 

relevant to eruptions from basaltic chambers, where chamber 
replenishment occurs due to deeper magma upwelling. In both 
cases studied, Q is constant. 

The simulations have been carried out assuming two- 
dimensional flow of a constant viscosity, incompressible New- 
tonian fluid. The assumption of incompressibility is not as 
poor as it may first seem. Although volatile-rich magma may 
achieve transonic velocities in the vicinity of the vent [Wilson 
et al., 1980; Housley, 1978; Kieffer, 1982; Spera, 1982, 1983], 
the Mach number M of magma flowing into the base of the 
conduit (point E, Figure 1) remains within the subsonic in- 
compressible flow regime (i.e., M <0.35 [Shapiro, 1953; 
Shames, 1982]). In order to show that this must generally be 
the case, consider the magma velocity at the entrance of a 
conduit in order to explain the most intense of eruptions. 
Wilson et al. [1978] suggest an upper limit of 10 • mZ/s for 
magma discharge (DRE) based on an analysis of volcanic 
eruption column heights. Most observed eruptions discharge 
at considerably lower rates in the range 10-105 m3/s (refer- 
ences previously cited). Adopting a typical vent diameter of 
100 m [Erken and Byers, 1976; Cook, 1968; Korringa and 
Noble, 1970] and the upper limit of discharge (10 • m3/s), the 
average magma velocity in the conduit is V = Q/A ~ 150 m/s. 
Now consider the isentropic sound speed of multiphase water- 
rich (m•lt + 8 wt % H20) rhyolite magma at 850øC and Pt = 
100 MPa. Under these conditions the concentration of H20 
dissolved in the melt (p = 2300 kg/m 3) is about 4.3 wt % 
[Shaw, 1974]. Partitioning of H20 between the vapor and 
melt phases indicates a volume fraction of vapor phase of 
about 25%, well below the fragmentation limit (~ 70%). The 
square of the sound speed of this mixture is approximately 

C 2 -- Pv Cv 2 (3) 
Pm •(1 - 00 

where Pv, Pm, 0•, Cv, and C represent the density of vapor and 
melt, volume fraction vapor phase, isentropic sound speed in 
the vapor phase, and magma (mixture) sonic velocity, respec- 
tively [Wallis, 1969; Helgeson et al., 1978; Carmichael et al., 
1977]. In this extreme example the magma sound speed is 
about 600 m/s. At the bottom entrance of the conduit there- 
fore, M = V/C ~ 0.25, which is still within the range cited for 
subsonic incompressible flow. 

The most severely constraing assumption of the present 
model is that of constant viscosity within the chamber. The 
results presented here are therefore most directly applicable to 
chambers of either constant composition (e.g., basaltic 
chambers) or to systems where the roofward enrichment of 

Fig. 4. 
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Configuration of reservoir-conduit system used for compu- 
tations. 



8226 SPERA'-NUMERICAL MODELS OF MAGMA EVACUATION WITHDRAWAL 

H20 offsets the roofward enrichment in SiO 2 to give an ap- 
proximately constant viscosity. In a layered system (e.g., rhyo- 
lite above basalt) the viscosity contrast may be quite large 
(r/•/r/2 • 103), and clearly, a constant viscosity model is inap- 
propriate. Although quantitative questions regarding the 
extent of vertical mixing in such a strongly stratified system 
cannot be addressed by the model presented here, that mixing 
does occur is clearly indicated by the propensity of mixed 
magmas in pyroclastic systems [Smith, 1979]. 

Model Geometry 

In Figure 4 the configuration of the reservoir-conduit 
system is shown. Calculations were carried out for a two- 
dimensional rectangular coordinate system. As is evident from 
Figure 4, the y axis is a line of symmetry (mirror plane), and 
consequently, calculations need be carried out only within one 
side of the spatial domain (in region ABCDEF). This affords 
considerable time and cost savings, as the computational 
domain is effectively cut in half. 

There are two independently variable length ratios relevant 
to magma withdrawal from a finite volume reservoir. These 
include the conduit/reservoir width ratio (Bc/Br) and the reser- 
voir width/depth ratio (BrIDe). In all the simulations reported 
here, the length of the volcanic conduit L½ was long enough to 
ensure fully developed vertical flow within the pipe; lengthen- 
ing L½ beyond this limit had no effect on computed solutions. 
Conclusions drawn in this study are based on numerical ex- 
periments for which Be/B, varied from 1/5 to 1/40 and B,/D, 
varied from 1/2 to 2. 

Differential Equations and Nondimensionalization 

The Navier-Stokes equations applicable to unsteady flow of 
an incompressible Newtonian fluid of viscosity r/and density p 
in two dimensions are 

( t?u t?u t?u) t?p [ t?2u t?2u• + u + = - + .37x + (4) 
and 

"7 + + = - + + ax - .a (s) 

lO 3 

lO 2 
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ß BASALT 

LOW Q 
BASALT 

BASALTIC 

i i i i 

10 -1 1 10 10 2 10 3 10 4 
Re 

=- 10 hours 

hour 

10 min 

lmin 

Fig. 5a. Time to attain fully developed (steady state) flow in a 
chamber as a function of Re. Reynolds number is related to discharge, 
conduit size, magma density, and viscosity by (2). Dimensional times 
are given for the case D,/B, ~ 1/2, B,/B c ~ 20, and B c = 100 m. The 
Reynolds numbers for silicic and marie composition systems are 
shown. LARI refers to low aspect ratio ignimbrite and HARI to high 
aspect ratio ignimbrite of Walker [1981]. LARI is characterized by a 
relatively low O (~ 10 '• m3/s), and HARI by high discharge (~ 10 6 
m¾s). 

/(Re) 

1 10 10 2 10 3 

Re 

0.1 10 4 

Fig. 5b. The function f(Re) of (26) as a function of Reynolds 
number. Note that f(Re) versus Re gives a slope near unity at low Re 
as deduced in Appendix B. As discussed in text, f(Re) is independent 
of reservoir-conduit relative dimensions and consequently may be 
used in conjunction with (26) to calculate times necessary for attain- 
ment of fully developed flow within any size chamber. 

Conservation of mass requires that 

6•u 

a• + •y: 0 (6) 
It is convenient to define a stream function • according to 

a½ -a½ 
u -- v -- (7) 

t?y 

and to, the vorticity, as 

6•v 6•u 
m .... (8) 

t?x 

Since the definition of the stream function automatically• sa- 
tisfies the continuity expression, it is no longer necessary to 
consider (6). When (7) and (8) are combined, an elliptic Pois- 
son equation of the form 

-4 .... to (9) 
C•X 2 c•y 2 

results. Equation (9) is essentially a statement of mass conser- 
vation in terms of the stream function and vorticity. 

The vorticity transport equation may be derived by differ- 
entiation of (4) with respect to y and (5) with respect to x and 
then subtracting the resulting expressions. Introducing the def- 
inition of the vorticity (8), one finally arrives at 

(10) 

which is the desired vorticity transport equation. The kin- 
ematic viscosity v is defined as r//p. Note that the parabolic 
vorticity transport equation consists of an unsteady term 
(2to/2t), the inertial terms u(2to/2x) and v(2to/2y) and the vis- 
cous diffusion term vV2to. 

Equations (7)-(10) constitute four equations in the un- 
knowns u, v, •, and to and represent the system of equations 
that must be solved along with boundary conditions in order 
to simulate magma evacuation from a crustal reservoir. 
Boundary conditions used to generate solutions in this work 
are given in the next section. 

It is convenient to nondimensionalize (7)-(10) to facilitate 
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the numerical analysis. This is accomplished by defining a 
velocity scale according to 

V-8Bc2 (11) 
where Q is the discharge (a constant during a simulation). 
Equation (11) defines the maximum velocity along the cen- 
terline of the conduit modeled here as an equant duct. The 
maximum vertical velocity occurs at the top of conduit. Adop- 
ting the half-width of the conduit Bc as the reference length, 
the following nondimensional variables may be defined' 

u v Vt 
•=-- •=-- •=• 

V V B c 

x y BcCO 

• = B• 9 = B• (• = --•- (12) 

VBc B, 

where all barred quantities are nondimensional. Introducing 
(12) into (7) through (10), the relevant equations take on the 
following form. 

Vorticity transport 

• + • • + 0 • - Re + oy2j (13) 
Poisson equation 

a• 2 F ay2 = --m (14) 
Vorticity 

&e aa (15) 
Stream function 

a - e = - -- (16) 

where the Reynolds number, defined according to 

pVB• 
ge - (17) 

is the only parameter of the problem. 

In the remainder of this paper, bars are dropped from all 
symbols. Unless explicitly stated, all variables discussed are 
the nondimensional ones as defined in this section. 

Boundary Conditions 

Different sets of boundary conditions were used depending 
on whether the magma recharge (case 1) or caldera collapse 
(case 2) model was being studied (see Figure 3). In addition, 
for the magma recharge case, two different velocity profiles 
were used along the bottom of the chamber (AB on Figure 4): 
parabolic and uniform velocity. Not surprisingly, the velocity 
field and hence the shape and position of evacuation isochrons 
were little affected by the shape of the influx velocity profile. 
Only for unrealistically large values of B,/D, (i.e., B,/D, > 10) 
does the influx velocity field significantly influence the stream 
function and vorticity fields in the interior of the chamber. 

Because of symmetry relations previously noted, u = co = 0 
along AF. Boundary AF also represents a streamline, so that 
• = const. For consistency with velocity profiles along FE 
and AB, • is set equal to zero along AF. The vertical velocity 
v along AF is part of the solution and is not set a priori. These 
conditions along AF are valid for both case I and case 2. 

Case 1. Along FE the following conditions are set: 
v=l--x 2 u=O 

(18) 
co: - 2x •b : « x(x 2 - 3) 

That is, parabolic fully developed flow is assumed in the far 
upstream portion of the conduit. The vorticity and stream 
function follow from their defining equations ((7) and (8)). 
Along boundaries ED, DC, and CB, u = v = 0 and • = -2/3. 
The stream function value along these boundaries follows 
from (18) and the fact that the boundary EDCB represents a 
stream line. Finally, along AB for the parabolic profile, 

[ 1 1- u=0 v= R 

1 x [(•) 2 ] ½ = 5 • - 3 (19) 
2x 

whereas for uniform flow, 

/ / •-- Re=10 
0 10 20 30 40 50 60 70 80 90 100 

DIMENSIoNLESS TIME 

Fig. 6b. Maximum withdrawal depth versus time of eruption for 
magma recharge and caldera collapse situations. Re = 10, B,/B c - 20, 
and B,/D• ,• 2.2 for both cases. 
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u =0 

= (20) 

co=0 

Case 2. In the caldera collapse model, the removal of 
magma from the reservoir is balanced by the volume dec- 
rement due to roof collapse. The bottom of the chamber is 
assumed to be impervious in this case (i.•., AB is an imperme- 
able no-slip boundary). Conservation of mass necessitates 
therefore that 

ll) __ dx v, dx (21) 

where v is the velocity along FE (v = 1 - x 2 + v,x 2) and v, is 
the velocity (assumed constant) of the foundering roof. As- 
suming a parabolic velocity along FE, (21) implies that v, = (1 
- •Xm)-•, where xm = R- • (see (12)), is the reservoir/conduit 

width ratio. The stream function and vorticity along FE 
follow immediately upon specification of v such that 

x 3 

• =-•-(1 - v,)- x •o = 2x(v,- 1) (22) 
Since the flow is fully developed along FE, the horizontal 
velocity vanishes identically there. Along wall ED the follow- 
ing boundary conditions apply: 

u = 0 v = v, (23) 
= «(v, + 2) 

Similarly, along DC, the no-slip, caldera collapse and stream 
function conditions are 

u = 0 v = v, (24) 
• = i(v,- 1) - v,x 

The boundaries CB and AB represent a stream line. This, 
together with the no-slip condition, gives 

u = v = = 0 (25) 

along both (CB and AB) boundaries. 

'1 
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._• 
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Fig. ?b. œvacuation isochrons (œI) for parameters of Figure ?a. Iso- 
chrons are labeled by dimensionless times. 

lines parallel to the x and y directions, respectively. The solu- 
tions to finite difference forms of (13)-(16) are found at a finite 
number of grid points (i, j) in the computational domain. The 
spacing of the grid points is intimately related to the stability, 
accuracy, and cost of a simulation. In Appendix A are details 
of the finite difference methods used for the computation of all 
fluid dynamic field variables (i.e., q•, to, u, and v), comments on 
the accuracy and stability of solutions, and the techniques 
used to track magma parcels in the Lagrangian mode for 
evacuation isochron determination. The books by Roache 
[1972] and Peyret and Taylor [1983] are recommended as 
general reference works to those desirous of a general intro- 
duction to extant methods in computational fluid dynamics. 

RESULTS 

Introduction 

A large number of numerical simulations were performed so 
that the effects of different boundary conditions, reservoir- 
conduit dimensions, chamber volumes, and Reynolds numbers 

T•-m ALGORITHM 

The common practice of defining a uniform finite differenc• 
mesh has been employed here. The indices i, j refer to the 
location of grid points corresponding to intersections of mesh 

• Re:10 3 

.o 4 

<u 6 
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• 8 

0 2 4 6 8 I0 12 14 16 18 
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Fig. 7a. Stream function plot for Re = 103, B,/B½ = 20, and Br/ 
D, = 2.2 for fully developed flow in the magma recharge case. Vertical 
depth axis is AF in Figure 4 for which • = 0, and -• varies from 0 
to 2/3 in equal increments. 

ø1! • Re=0.40 
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_•4 
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Fig. 7c. EI for Re = 0.10. Dimensions of reservoir/conduit identi- 
cal to Figure 7a. Note the vertical elongation of isochrons compared 
with Figure 7b. Although the shape of isochrons is a function of Re, 
the volume of the stagnant zone near the chamber roof is only weakly 
dependent on Re. Volume of stagnant zone correlates more directly 
with chamber size and shape. 
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Fig. 8a 

Fig. 8. Stream function and E1 diagrams illustrating effects of 
chamber geometry on magma withdrawal. Re = 1 in all cases. Analy- 
sis of these and related simulations indicates that increasing B,/B c at 
constant B,/D, or decreasing B,/D, at constant B,/Bc creates a larger 
volume of roofward untapped magma. (a) B,/B½ = 5, B,/D, = 1, -• 
varies from 0 to 2/3 in equal increments. (b) B,/B, = 5, B,/D, = 1/2, 
streamlines as in Figure 8a. (c) EI for Figure 8b. (d) B,/B, = 40, 
B,/D, = 2. (e) EI for Figure 8d. 

could be systematically explored. Additionally, transient infor- 
mation could be obtained for cases where a steady state solu- 
tion exists. Stream function plots (i.e., particle paths) were 
constructed by smoothing and interpolation of stream func- 
tion values at nodal points, and evacuation isochrons were 
determined by tracking of inert markers along streamlines. It 
will be noted therefore that each simulation generated a large 
amount of information. In the interests of brevity, only some 
of the more salient features of the solutions are considered 

here as they apply to the magma evacuation problem. Most of 
the results presented in this section are given in terms of di- 
mensionless quantities, as this is the most concise means of 
information transmission. For the sake of illustration, how- 
ever, some dimensional results are also cited. 

Case 1: Magma Recharge 

Spin-up time. The imposed initial condition is that 
u=v=0 everywhere within the computational domain 

I 
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Fig. 8c 

except along boundaries AB and EF as indicated by (18), (19), 
or (20). Field variables (•, co, u, and v) subsequently undergo a 
transient development (spin-up) and finally reach a steady 
state after some finite time has elapsed. This duration, denoted 
as tss, can be shown from dimensional analysis to depend only 
on the dimensions of the chamber and the Reynolds number. 
That is, 

ts: = f(Re) (26) 

where the function f(Re) must be determined by numerical 
experiment. It may be anticipated from a simple analysis (see 
Appendix B) that t• is directly proportional to Re in the 
creeping flow regime. The dependence of ts• on Re becomes 
weaker as Re increases until finally in the turbulent range 
(Re > 2 x 103) the spin-up time becomes independent of Re. 
That is, t,s is a monotonicallly increasing function of Re that 
approaches asymptotic behavior in the turbulent regime. 
Therefore low Re eruptions will be associated with shorter 
spin-up times compared with high Re eruptions. It is impor- 
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tant to note that the time dependence referred to here is unre- 
lated to unsteadiness in magma discharge. Rather it refers to 
the developing velocity field with the chamber. 

Figure 5a gives the results of a series of numerical experi- 
ments that corroborate the deductions made above. Note that 

for small Re, tss depends linearly on Re, whereas as Re in- 
creases, tss becomes nearly independent of Re. The results 
shown in the figure are for the particular values of D,/B c = 9 
and B,/Bc = 20. In Figure 5b the dependence off(Re) on Re is 
shown; the results in Figure 5b are independent of chamber 
size. Figure 5b used in conjunction with (26) enables one to 
determine the spin-up time for any size magma chamber. As a 
specific example, consider tss for an eruption from a chamber 
10 km deep with a cross-sectional area of 400 km 2 and con- 
duit diameter of 100 m. As additional parameters assume Q - 
5 x 104 m3/s and v = 10 m2/s (r/•., 2 x 10 • P). Then from (2), 
Re • 50, and from Figure 5b and from (11), (12), and (26) the 
spin-up time is approximately 22 hours. The volume of erup- 
ted magma at this time would be about 4 km 3 (DRE). Note 
that the spin-up time represents a significant period of time 
(nearly a day) relative to a typical eruption duration. 

Stream Function and Evacuation lsochrons 

Magma withdrawal. In Figure 6a a dimensional cross sec- 
tion of a large aspect ratio (B/B, •., 20) magma chamber is 
shown with illustrative evacuation isochrons. Time is mea- 

sured with respect to the initiation of the eruption (t = 0), and 
the discharge is constant throughout the 2-day eruption. In 
this example the spin-up time is about 6 hours, at which time 
magma from a depth of 5 km is mixing with material near the 
top of the reservoir. Note that as the eruption proceeds, the 
fraction of "deep" magma increases monotonically. Figure 6b 
shows the variation of maximum withdrawal depth versus 
time for both the recharge (open system) and caldera collapse 
models. As an eruption proceeds, the extent of potential verti- 
cal mixing is seen to increase. A significant volume of magma 
can remain trapped in a "backwater" region near the roof of 
the chamber during the course of an eruption. The size and 
shape of this stagnant region depend on the relative dimen- 
sions of a chamber and on whether magma recharge or cal- 
dera collapse balances the rate of magma withdrawal (cf. Fig- 
ures 9b and 9c). 

Mixing] depth versus Re. Figure 7 compares ½ and iso- 
chron plots for fully developed (t = tss) flows with B•/D• = 2.2 
and B•/B, = 20 for Re = 0.1 and Re = 103. A comparison of 
isochron diagrams (Figures 7b and 7c) shows the effect of Re 
on mixing depth. The effect of increasing Re is to decrease the 
vertical scale over which mixing occurs. All other factors being 
equal, a high Reynolds number eruption from a zoned or 
layered chamber would show less compositional heterogeneity 
than a low Re eruption from the same chamber. For example,. 
at a dimensionless t -- 50 and for B, - 100, the low Re erup- 
tion would mix magma over a depth range of 3.2 km versus 
only 2.5 km for the high Re eruption. The stream function 
field shows that the assumption of radial flow in the reservoir 
breaks down at large distances from the conduit entrance. 

Effects of chamber size. Figure 8 compares ½ and evacu- 
ation isochron systematics for chambers of different aspect 
ratios and widths. All results are for Re = 1 at times corre- 

sponding to fully developed flow throughout the chamber. 
Analysis of these and other numerical experiments (not shown) 
indicates that both the reservoir/conduit width ratio and res- 
ervoir/depth length ratio are quantitatively important parame- 
ters with respect to the shape and orientation of evacuation 
isochrons. Comparison of EI plots shows that for fixed Re and 
B,/D, increasing B•/B c (i.e., making the chamber wider rela- 
tive to the conduit) makes for a larger volume of roofward 
stagnant magma that remains untapped even for long dura- 
tion eruptions. Similarly, for fixed B•/B,, making the chamber 
deeper (decreasing B•/D,) also leaves a larger amount of un- 
tapped magma in the region directly underlying the roof of the 
reservoir. A corollary of the stagnation phenomenon is for 
magma to be drawn from deeper levels and hence for the 
extent of potential vertical mixing to be maximized relative to 
cases where a higher fraction of roofward magma is erupted. 

Case 2: CaMera Collapse 

In Figures 9a, 9b, and 9d, ½ and isochron diagrams are 
shown for magma evacuation driven by caldera collapse. 
Steady solutions cannot be found in this case because of the 
decreasing depth of the reservoir. The vorticity field (not 
shown) shows considerably more rapid spatial variation due 
to the perturbing role of the subsiding roof. The stream func- 
tion diagram (Figure 9a) indicates that the foundering roof 
acts as a piston and forces magma to move laterally toward 
the conduit. Within the conduit there is a very thin zone 
adjacent the subsiding block where magma is dragged down, 
although this generally cannot be resolved due to coarseness 
of the grid. This is a consequence of the no-slip boundary 
condition on v and represents an additional source of vorticity 
absent in the recharge problem. 

The effect of roof foundering is clear in the evacuation iso- 
chron diagram (Figure 9b). Relative to the magma recharge 
case, the isochrons are laterally elongated. This implies that 
the extent of vertical mixing will be less than in the recharge 
case, although clearly, magma juxtaposition remains a promi- 
nent feature of the withdrawal process. Field evidence [see 
Lipman, this issue] suggests that vertical relief due to caldera 
collapse is commonly in the range 102-103 m, so that roof 
subsidence is probably a relatively small fraction of the 
chamber depth. Comparison of Figures 9b and 9c illustrates 
the difference between the magma recharge and caldera col- 
lapse models in terms of evacuation isochrons, all other fac- 
tors being identical. The important features are that (1) maxi- 
mum withdrawal depth versus time grows at a much slower 
rate (Figure 6b) and (2) the volume of the stagnant (untapped) 
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Fig. 9a. Stream function plot for caldera collapse case Re = 10, 
B,/Bc = 20, and B,/D, = 2.2. Stream function field for roof collapse is 
equal to 1% of initial chamber depth (D,), and -q• varies from 0 to 
2/3 in equal increments. 

region is much smaller for the caldera collapse case. Figure 9d 
shows EI for a wider and deeper chamber at Re-- 100. This 
illustrates again the flattened shape of the isochrons for the 
caldera collapse situation. 
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Fig. 9c. EI plot for magma recharge case with some Re and ge- 
ometry as in Figures 9a and 9b. Direct comparison of Figures 9c and 
9b shows significant differences in the pattern of magma withdrawal, 
although an appreciable amount of juxtapositional mixing occurs in 
both cases. 

SUMMARY OF PETROLOGICAL IMPLICATIONS 

Caution is recommended in applying the results of the nu- 
merical simulations to specific volcanic eruptions. Only a 
small fraction of possible chamber sizes and shapes, vent lo- 
cations (ring fracture, central vent, fissure), and density- 
viscosity variations have been studied to date. Modeling of 
ring fracture eruptions can be accomplished in a straightfor- 
ward manner by changes in boundary conditions along AF 
(Figure 4). Preliminary simulations show that the juxtapo- 
sition of magma from an even wider depth range occurs for a 
ring fracture eruption relative to the central vent case. Perhaps 
the most important limitation in the numerical experiments 
reported on herein is the assumption of constant density and 
viscosity within the reservoir. 

Despite these limitations, several features of the present 
model are probably of general qualitative, if not semiquantita- 
tive, significance to the dynamics of magma withdrawal and 
the interpretation of compositional and thermal zonation in 
ash flow deposits. 

1. As an eruption proceeds, the maximum depth of with- 

drawal increases monotonically (Figure 6b). An obvious impli- 
cation of this is that systematic changes in temperature and 
composition of erupted products will occur during the course 
of any eruption. In Figure 10, temperature data from Hildreth 
[1977] are presented for the extracaldera facies of the Bishop 
Tuff, a Quaternary ignimbrite deposit in eastern California. 
Two features of these data are especially important. First, as 
the eruption proceeded, the mean temperature of erupted 
magma increased from 720øC to about 780øC. Second, as the 
eruption progressed, the temperature span at a given strati- 
graphic horizon increased from a few degrees for the earliest 
phase of the eruption to greater than 50øC for the last phase 
(Mono Basin flow unit). Both features are qualitatively pre- 
dictable from evacuation isochron diagrams assuming thermal 
gradients existed within the chamber. It is hoped that further 
refinements and extensions of the numerical model will allow 

use of temperature information to differentiate central vent 
from ring fracture eruptions driven by either caldera collapse 
or magma recharge. 
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Fig. 9b. EI plot for simulation described in Figure 9a. 
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Fig. 9d. IC plot for caldera collapse case with Re = 100, B,/B c = 30, 
and B,./D, = 1. 
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Fig. 10. Fe-Ti oxide temperatures of fresh pumice samples as a 
function of eruptive fraction for the extracaldera facies of the Bishop 
Tuff, California. Numbers in parentheses refer to the number of inde- 
pendent temperatures for each phase of the eruption. Data from Hil- 
dreth [1977]. The fact that both mean temperatures and standard 
deviations increase with fraction erupted is consistent with the models 
presented here. 

2. Examination of the evacuation isochron diagrams re- 
veals that a significant portion of magma initially roofward in 
a chamber but at a lateral distance from the conduit will not 

be erupted, especially for chambers of large B,/B½ and small 
B•/D, This effect is most dramatic for the magma recharge 
situation, although the phenomenon persists in situations 
characterized by caldera collapse. Note that evacuation iso- 
chron envelopes become tangential to a single curve in x-y 
space. Magma lying above this curve remains in the chamber 
despite its proximity to the roof. This implies that estimates of 
the rate of production of evolved magma, as inferred by ash 
fic• volume-repose time systematics [e.g., Spera and Crisp, 
1981'1, are maximal values, since all of the evolved magma 
present in a given chamber will not be erupted even when 
deeper (marie) magma has been tapped. Furthermore, the stag- 
nation effect is intensified as the ratio of reservoir width/con- 
duit width (B•/Bc) increases. As a consequence, volumetric 
rates for production of evolved (high SiO2) magma as inferred 
from eruptive volume-repose time systematics might be biased 
toward high values for smaller systems when, in fact, in situ 
rates are comparable. 

3. In Figures 9b and 9c, evacuation isochron diagrams are 
compared for the magma recharge versus caldera collapse 
situation. All relevant geometric and dynamic parameters are 
identical except for obvious changes in boundary conditions. 
There are significant differences in the shapes and positions of 
isochrons for these two cases. Whereas isochrons for the re- 

charge case become tangential at gradually increasing depths, 
in the caldera collapse case, isochrons continue to migrate 
laterally. The fact that the size of the quasistagnant region is 
much smaller in the caldera collapse case implies that zo- 
nation effects should be less extreme compared with the re- 
charge case, other factors being identical. 

APPENDIX A 

Finite Difference Methods 

Vorticity transport. Transient solutions to the vorticity 
transport equation (VTE) were developed using one of two 
procedures described here. The first method involved an ex- 

plicit marching procedure (forward time) with space-centered 
differencing for the diffusion terms and upwind differencing for 
the advection terms. The formula utilized for the inertial terms 

is based on the convective form of the vorticity transport 
equation and may be written 

+1 n 

O.)ij n m O.)i j 
At 

Alta)i+ 1j n + A203i,j n + A3tOi-l,jn.) ---• -- ttiJ Ax 

A4toi,j+ i n 'Jr' Astoi,j n + A6oJi,j • - vu Ay 
1 

n in__ 2toon)/(AX)2 + •ee (tot + •.j + tot_ •. 
1 

4' •ee (O')i'J+ In 4' O,)i, j_ 1 n -- 2toon)/(Ay) 2 (A1) 
In (A1) we have 

A•= +1 A2=--I A•=0 u 0<_0 

A•=0 A2= +1 A3=-I u o>0 

A,•= +1 A s=--I A•=0 v o<0 

A•.=0 A•= +1 A6=--I %>0 

In an effort to find a more efficient and faster VTE solver, a 
second upwind differencing technique based on the donor cell 
method of Gentry et al. [1966] was used. Average interface 
velocities on each side of the mesh point are defined and the 
signs of these velocities determine which value of co is utilized. 
Note that unlike the first upwind method, this one is conser- 
vative. Formally, this method is more accurate than the first 
since second-order accuracy of the advection terms is retained 
as in all centered difference schemes. The appropriate equa- 
tions are 

+1 • O,)..n O')iJ n U I•RCOR • tiLO')L 

where 

and 

At Ax 

T O')T • •)BO')B 

Ay 

diffusion terms (A2) 

UR '--«(Ui+ 1, 'Jr'uU n ) (A3a) jn 

U L •-«(Uij n + gli+ 1.j n) (A3b) 
1 n 

/)T -- •'(/)i,j+ 1 '4- l)ij n) (A3c) 

1 n n) •)B --- •'O)ij JC' •)i,j- 1 (A3d) 

(-D R -- (.Dij n gl R > 0 
_ jn _ (A4a) -- (-Oi + 1, UR '• 0 

jn O')L --- (-Di-1, ill > 0 

-- O,)ij n ll L • 0 
(A4b) 

O')T gj •)T •' 0 

= O•i,j+ 1 D r • 0 
(A4c) 

O')B •--- O')i,j-1 I)B >' 0 

-- O')ij n •)B • 0 
(A4d) 

Comparison between the two methods shows that the con- 
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servative form of the VTE leads to slightly more accurate 
solutions, although in no case was the difference in vorticity 
values greater than a few percent. This is consistent with the 
observations of Torrance [1968], who found a similar com- 
parison for a thermally driven cavity flow problem. 

Numerical stability conditions are met in practice by speci- 
fying the time step according to a criterion based on avon 
Neumann stability analysis of the vorticity transport ex- 
pression I-Roache, 1972b]. Convergence is ensured so long as 

[2(, ,u, At_< •ee • + +•xx +Ay] (A5) 
which is a modified Courant condition. Since max lul < max 
Ivl = 1, by setting lul = Ivl = 1, a time step ensuring stability 
could be determined once the mesh size was specified. It has 
been noted [Nob and Protter, 1963; Roache, 1972a; Runchal 
and Wolfshtein, 1969] that unidirectional differencing will gen- 
erate numerical (artificial) viscosity, which can lead to incor- 
rect results. Fortunately, the magnitude of numerically in- 
duced viscosity effects can be monitored during a calculation 
so that the mesh size may be chosen fine enough to ensure an 
accurate solution to the VTE. The results presented here are 
consistent with the conclusions of Campbell and Mueller 
[1968], Gosman et al. [1969], Bozeman and Dalton [1973], and 
Torrance [1968], all of whom obtained meaningful numerical 
results by using explicit (forward time) upwind differencing 
methods. 

Poisson equation. The Poisson equation was solved by a 
successive overrelaxation (SOR) technique first suggested by 
Richardson [1910] and subsequently modified by many others 
[e.g., Frankel, 1950; Allen and Southwell, 1955; Young, 1954]. 
The overrelaxation parameter, which varied slightly with size 
and shape of the computational domain, was found by nu- 
merical experimentation. Values other than the optimum one, 
while not having much of an effect on the solution, greatly 
slowed iterative convergence. For example, for a case 1 simu- 
lation with J = 1.75, the first iterative cycle through the Pois- 
son expression produced convergence after 500 steps, whereas 
with the optimum value of 1.91, convergence is achieved after 
120 iterations. Since most of the computational time (about 
70%) is spent in solving the Poisson equation, an optimum 
choice of J is essential to minimize the cost of the calculation. 

The criterion for convergence of the Poisson equation was for 
the relative error in ½ at every point in the mesh to be less 
than one part in 10 '•. The finite difference expression used to 
iteratively solve the Poisson equation was 

• k k+l k 

k+l 

+ ½io- • + AxZwu - 4½u •'] (A6) 
where k is introduced as an iteration index. 

Velocity field. The finite difference expressions used for 
calculating velocities are standard ones that maintain second- 
order accuracy. The velocities ui,j and vi,j were found accord- 
ing to 

el,j+ 1 -- ½i,j- 1 (A7) u•,• = 2Ay 
and 

½•- •'; - ½•+ •'; (AS) v•,• = 2Ax 

where ½u, Ax, and Ay represent the stream function at mesh 

point (i, j), the increment in the x direction, and the increment 
in the y direction, respectively. In all of the computations 
reported on here, a uniform and equant (Ax = Ay) mesh was 
utilized. 

Boundary vorticity values. Along boundaries AF, FE, and 
AB, w is set by the boundary conditions. Since AF is a plane 
of symmetry along which u vanishes identically, o• is equal to 
zero there. Along FE and AB, w is easily determined by using 
the definition of the vorticity and the velocity boundary con- 
dition. Along the no-slip boundaries (ED, DC, and CB), the 
vorticity is not defined a priori and must be determined as 
part of the solution. The vorticity is easily defined at a grid 
point embedded in a no-slip wall if it is noted that • is equal 
to a constant along a wall and O•/On = 0 normal to that wall. 
If • is expressed in a direction normal to a no-slip boundary 
by a Taylor series expansion (e.g., boundary CB), 

½ ½cu + + +... (A9) : c•Y • •}c• y 
then since (O•/Oy) = Uc• = 0, we may use the d•finition of the 
vorticity to show that 

(2v 2u)(2v 2:½• •2:½• (A10, 
since v = 0 along the no-slip wall. Now, using (A6) and (A7), it 
may be shown that 

-2(½,_ ,,• - ½,.•) (All) •,• = 
for no-slip walls parallel to the y direction; a correspondingly 
symmetric relation can also be found for no-slip walls parallel 
to the x direction (e.g., DC). This formulation for w was first 
used by Thom [1933]. 

In the caldera collapse case, the vorticity along boundary 
DE is slightly different than (All) because of the nonzero 
vertical velocity due to roof collapse. By arguments analogous 
to those •vcn above, the vorticity along DC is found to be 

-2 

where i• is the value of the x grid point index along wall DE. 
Finally, it is noted that the vorticity at point D, a sharp 

convex corner, is singular. Although there is no reason to 
assume continuity or single valucdness of w at point D, some 
approximation must bc made. This problem has been recently 
addressed by Holstein and Paddon [1982], who recommend 
the procedure used by Kawaguti [1965] to determine wa. This 
recommendation has been followed here. 

Lagrangian Particle Tracker 

The evacuation isochron diagrams were calculated by fol- 
lowing the motion of several hundred marker particles in La- 
•an•an coordinates by numerical integration of equations of 
the form 

X = X 0 + fU dt (A13) 
Velocities along an arbitrarily chosen streamline were calcu- 
lated using a bicubic spline method to interpolate velocities (u 
and v) defined at nodal points and setting time increments 
small enough to preserve accuracy without introducing unde- 
sirable numerical effects. This procedure resulted in a set of 
ordered (x, y, t) values along each streamline. The entire set of 
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(x, y, t) values were then sorted on the basis of t values, and 
the x, y coordinates of the isochrons could be simply drawn 
by a standard plotting algorithm. 

Computational Algorithm 

A simulation was initiated by setting values of all internal 
field parameters equal to zero or as specified by a boundary 
condition. The vorticity field at the new time level (coi0 k+ •) 
could then be calculated for all interior mes•p points in an 
explicit manner. Following this, the Poisson equation was 
solved by iteration by using the new (previously calculated) co 
values and by updating the stream function vdlues as soon as 
they became available (i.e., SOR). Generally, the number of 
iterative cycles required for convergence of the stream function 
to one part in 10 '• varied from 130 at the initiation of a calcu- 
lation to 1 when the system was near the steady state. Upon 
attaining convergence in q/, the velocity field (u and v) and the 
vorticity along all no-slip walls could be determined. This 
completes the determination of the flow field at any particular 
time. In order to attain the steady state, one returns to the 
vorticity transport equation, and the entire iterative-sequential 
process is repeated. Finally, when the vorticity field changes 
by less than some small quantity between two successive time 
steps, the steady state has been reached. When the relative 
change in vor.ticity values at all (i, j) changes by less than one 
part in 10 '•, the computation was halted. 

In order to ensure that computed results had significance, 
the number of mesh points was doubled and the entire calcu- 
lation repeated. This is an expensive test procedure but never- 
theless a necessary one in order to verify the code and check 
the overall stability and veracity of the computational algo- 
rithm. In cases when this test was performed, comparison of 
field values was good to within several percent, becoming 
slightly poorer for large Reyonds numbers. 

For the caldera collapse case the numerical algorithm was 
modified slightly to take account of the downward moving 
roof. After each cycle through the complete computational 
procedure, the finite difference mesh was slightly readjusted in 
space so that nodal lines coincided with boundaries ED and 
DC. Values of field variables (q/, co, u, v) at the transformed set 
of nodal points (it, Jt) were determined using values at (i, j) and 
a bicubic spline interpolator and the untransformed set of 
fixed variables. Heuristically, the stability of the solution could 
be ensured by adopting a small time increment, so that roof 
subsidence was a very small fraction (1%) of the spatial in- 
crement Ax. 

A single simulation (case 1) from initial to final (steady) 
state for Re = 103 required about 15 min of CPU time on the 
IBM 3081D at the Princeton University Computer Center for 
a domain that included about 4000 nodal points. 

APPENDIX B 

It is the purpose here to show that tss • Re in the creeping 
flow and low-Re regime (Re < 10) and that in the inertial to 
subinertial regime (Re > 103), tss is independent of Re. 

As a one-dimensional analog to the transient magma evacu- 
ation problem, consider impulsively started couette flow in a 
channel of width L. Suppose that fluid is bounded by two 
rigid planes at x = 0 and x = L and is initially at rest. At t = 0 
the lower plate is suddenly brought to the constant velocity U 
while the lower plate remains fixed. Introducing the dimen- 
sionless variables 

u x tU 

a= = Z -E 

the governing equation may be written 

•œ- Re •2 (B2) 
The solution of (B2) is 

ff(•, œ) = (1 - •)- • • • exp sin nn• (B3) 
•.=•n Re J 

When the summation term on the right-hand side of (B3) is 
small, the flow will be in the steady state. Steady flow will be 
attained when the ratio •/Re exceeds some critical value, that 
is, •/Re = const. Now, in a separate experiment if a higher Re 
is initially imposed, tss will necessarily increase so that the 
ratio •ss/Re is maintained constant. Therefore it is shown that 
tss is directly proportional to the first power of Re. 

In the case where inertia is important, the relevant ex- 
pression for the x momentum equation is 

• + u • + v 6 = • k bx2 + •Y:) (B4) 
Heuristically one notes that as Re becomes large, the right- 
hand side of (B4) vanishes and so solutions to (B4) as Re • • 
cannot depend upon Re. Therefore t•s cannot depend upon Re 
in the inertial regime. 
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