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Abstract. In a fluid-saturated porous medium, dissolved species advect at the pore velocity, while
thermal retardation causes heat to move at the Darcy velocity. The Darcy model with the Boussinesq
approximation in a square medium with a porosity of φ= 0.01 subject to two sources of buoyancy
is used, to study numerically the dynamics of this so-called double-advective instability. The vertical
walls of the medium are impermeable and adiabatic, while Dirichlet boundary conditions are imposed
on the horizontal walls such that the medium is heated and salted from below. For an increasing ratio
between chemical and thermal buoyancy, while keeping the thermal buoyancy fixed, a transition from
a steady to a chaotic convective solution is observed. At the transition a stable limit cycle is found,
suggesting that the transition takes the form of a Hopf bifurcation. The dynamics of the chaotic
flow is characterized by irregular transitions between nonlayered and layered flow patterns, as a
result of the spontaneous formation and disappearance of gravitationally stable interfaces. These
interfaces temporarily divide the domain in layers of distinct solute concentration and lead to a
significant reduction of kinetic energy and vertical heat and solute fluxes. The stability of an interface
is described by a balance between the viscous drag forces in the convective layers and the buoyancy
force associated with the density interface.
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1. Introduction

Convection of fluid in a saturated porous medium has been studied intensively
during the past few decades. Most of the work, both mathematically and experi-
mentally, has been devoted to the conditions for the onset of motion and the flow
dynamics of convection driven by temperature differences alone (see Nield and
Bejan, 1999 for a review).

In most natural circumstances, however, the fluid is subject to more than one
source of buoyancy. Thermochemical convection (TCC) is a fluid dynamical phe-
nomenon in which two sources of buoyancy, heat and solute, drive the flow. TCC
of purely viscous fluids is well known in the context of oceanography (Schmitt,
1995) and is characterized by the different diffusive behavior of heat and solute.

Like of purely viscous fluids, the dynamics of TCC in porous media is funda-
mentally different from flow driven by the temperature field only. TCC of fluids
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in porous media deviates also from TCC of purely viscous fluids in the sense that
the difference in heat and solute transport is rather double-advective than double-
diffusive: the dissolved species advect at the pore velocity q/φ, while thermal
retardation causes heat to move at the Darcy velocity q (Phillips, 1991). The oc-
currence of the double-advective instability becomes apparent especially in media
of low porosity, like are vast amounts of the Earth’s continental and oceanic crust
(Fisher, 1998; Manning and Ingebritsen, 1999). TCC, therefore, has implications
for many geological processes, such as crustal heat and solute transport, meta-
morphism, the diagenetic evolution of sedimentary basins and ore genesis (Person
et al., 1996; Oldenburg and Pruess, 1998). Besides its importance in the hydrogeo-
logical context, thermochemical convection in porous media has a wide variety of
(geo)technical applications, among them contaminant transport in saturated soil,
underground disposal of nuclear wastes, liquid re-injection (Oldenburg and Pruess,
1999), the migration of moisture in fibrous insulation, and electro-chemical and
drying processes.

In this study, the double-advective instability is studied by means of numer-
ical simulations of flow in a two-dimensional square domain with a porosity of
φ= 0.01. The medium is heated and salted from below, in order to resemble
roughly the hydrogeological situation in the Earth’s upper crust. Focus is on the
form of the transition from steady to chaotic convection, which is observed when
the ratio of chemical over thermal buoyancy increases while the thermal buoyancy
is held constant. Furthermore, the flow dynamics in the chaotic regime is investi-
gated, by performing a detailed analysis of the convection simulations performed
by Schoofs et al. (1999).

First, the governing equations and the employed numerical method are de-
scribed (§2). In Section 3, a concise literature review is given. The flow dynamics
of TCC at low porosity is described in Section 4. In Section 5, the transition from
the steady convective regime to the chaotic regime is studied, by analyzing the nu-
merical data of simulations with various buoyancy ratios and spatial resolutions. In
Section 6, focus is on the transitions between layered and nonlayered flow patterns,
as commonly observed in the chaotic regime. The stability of a density interface
between two convective layers is described in terms of a force balance. The paper
ends with a discussion of the results (§7).

2. Formulation and Numerical Method

An incompressible fluid in a rigid, homogeneous, and isotropic porous medium
is considered, Darcy’s law is assumed for conservation of momentum, and the
Boussinesq approximation is applied. A standard Fickian model is considered for
the mechanical dispersion of the dissolved species (Bear, 1972). Dispersion of heat
is neglected. A linearized equation of state (ρ= ρ0[1 − α(T − T0)+ β(C − C0)])
is employed (where ρ [kg/m3] is fluid density, α [K−1] and β [wt%−1] are thermal
and chemical expansivity, T [K] is temperature, C [wt%] is chemical concentra-
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tion, and reference values are denoted by the subscript 0). The laws for conser-
vation of mass, momentum, energy, species, together with the equation of state
describe convection in porous media mathematically (see Schoofs et al., 1999,
2000 for more detailed definitions). The equations were nondimensionalized with
the height of the domain h [m] as the length scale, h2σ/κ [s] as time scale, µκ/K
[Pa] as dynamic pressure scale, and �T = T1 − T0 [K] and �C = C1 −C0 [wt%]
as the temperature and salinity scale, respectively (maximum values of T and C are
denoted by the subscript 1). Here, σ [−] represents the ratio of the heat capacities
between the solid matrix and the fluid σ = φ + (1 − φ)(ρcp)matrix/(ρcp)fluid, with
cp [J/m3] the isobaric heat capacity. In this study, σ = 1.

In non-dimensionless form, the system of equations in a two-dimensional set-
ting is given by
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Here x [m], z [m] are the Cartesian coordinates, p [Pa] is pressure, t [s] is time,
q [m/s] is Darcy velocity, and al [m] and at [m] are the longitudinal and transversal
dispersivity, respectively.

The six dimensionless parameters governing the convective dynamics are the
thermal Rayleigh number RaT (a measure of the strength of the heat flow driving
the flow), buoyancy ratio Rρ (the ratio of chemical over thermal buoyancy), effec-
tive porosity φ∗, longitudinal dispersivity at , dispersivity ratio ar , and the molecu-
lar Lewis number, Lemol (ratio between the effective thermal diffusivity of the
saturated medium, κ [m2/s], and the molecular diffusivity of the chemical com-
ponent within the fluid, Dw [m2/s], multiplied by the tortuosity of the medium,
τ [−]). These dimensionless parameters are defined as
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Here µ [Pa s] denotes dynamic fluid viscosity, K [m2] is permeability, g [m/s2]
is gravitation, and φ [−] is porosity. Scale analysis of (2) and (3) shows that dis-
solved species advect at the pore velocity q/φ∗, while temperature advects with the
Darcy velocity q. In the following, parameters are dimensionless unless specified
otherwise.

Equations (1)–(3) are solved on a cell-centered grid with a second-order finite
volume multigrid method. Spatially, a central approximation is used for the diffu-
sive fluxes. The flux-limited Fromm scheme is employed for the advective com-
positional fluxes to preserve the monotonicity of the solution at sharp interfaces
(Hundsdorfer and Trompert, 1994). The non-limited version of this scheme is
used for the advective thermal fluxes. Time integration is carried out by an im-
plicit Crank–Nicolson method for the thermal diffusion and an explicit Adams–
Bashforth scheme for the advection and the chemical dispersion terms. Validation
of the code was accomplished by comparison with published results on thermal
convection and TCC (Steen and Aidun, 1988; Rosenberg and Spera, 1992). Further
details of the method are given by Schoofs (1999).

Figure 1 displays the configuration of the model together with the boundary
conditions. A square domain with impermeable boundaries is considered. The tem-
perature and chemical concentration at the bottom boundary are equal to 1, while
at the top both quantities are fixed to zero. In this way heat destabilizes the liquid,
while the solute provides a stabilizing influence. The vertical walls are insulators
with respect to heat and solute transport. Initially, the motionless fluid is cold and
chemically depleted. The fluid is perturbed simply by giving the lower left grid
point a temperature T = 10−3.

The thermal (chemical) Nusselt number, which is the ratio of the actual heat
(solute) flux to the flux that would occur via heat (solute) conduction alone, is

Figure 1. Geometrical setup and boundary conditions of the experiments in a porous me-
dium, which is heated and salted from below. Initially, both temperature T and chemical
concentration C are zero.
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defined as

NuT = −∂T
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at z = 1 (4)

and

NuC = −
(
f3
∂C

∂x
+

(
f2 + 1

Lemol

)
∂C

∂z

)
at z = 1, (5)

where the overbar implies the horizontal average. The spatially-averaged kinetic
energy per unit mass of fluid KE, a convenient measure of the vigor of the flow, is
defined as

KE = 1
2〈q2

x + q2
z 〉, (6)

where the brackets denote the global average.

3. Literature Review of Thermochemical Convection in Porous Media

The onset of TCC in porous media has first been studied by means of linear stability
analysis (Nield, 1968). Rudraiah et al. (1982) applied nonlinear stability analysis
to the case of a porous layer with isothermal and isosolutal boundaries. Numerical
and analytical solutions of the flow dynamics of TCC were obtained by Trevisan
and Bejan (1987), Rosenberg and Spera (1992), Alavyoon (1993), Alavyoon et al.
(1994), Mamou et al. (1995, 1998), Cooper et al. (1997, 2001), and Mamou and
Vasseur (1999), for the case of a rectangular medium under various thermal and
solutal boundary conditions.

Laboratory experiments at moderate to high Rayleigh numbers have shown, that
TCC in porous media takes the form of a boundary layer flow (Griffiths, 1981).
Griffiths’ experiments also proved that a thin horizontal density interface between
two convective layers can be maintained against diffusive thickening. Finally,
Griffiths determined heat and solute fluxes of the layered convective system, in-
cluding a dependence of heat flux on interfacial deflections. Murray and Chen
(1989) showed experimentally and numerically that in the presence of a stabilizing
salinity gradient, the onset of convection is marked by a dramatic increase in heat
flux at a critical temperature difference value. Moreover, the heat flux curve estab-
lished a hysteresis loop, when the temperature difference is reduced to subcritical
values.

On the basis of nonlinear perturbation theory and the parallel flow approxima-
tion (valid for shallow or slender enclosures), Mamou and Vasseur (1999) predict
analytically the flow behavior of TCC. The results indicate that convection can
arise at Rayleigh numbers below the supercritical value in terms of linear stability
analysis, indicating the development of subcritical flows. They also showed that
multiple solutions exist for a given set of parameters in the overstable regime.

The effect of porosity on the dynamics of TCC has been studied explicitly by
Mamou et al. (1998) for porosities between 1 and 0.1. By solving the full gov-
erning equations these authors showed, that decreasing porosity from φ= 0.4 to
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φ= 0.1 leads to a transition from a periodic oscillatory solution to a multi-periodic
solution. Other parameters were a moderate thermal Rayleigh number of RaT = 50,
a buoyancy ratio of Rρ = 1, an aspect ratio of A= 4, and a diffusivity ratio of 10.
Mechanical dispersion of solute was neglected. The multi-periodic solution evolves
towards a convective flow varying from single to multilayered roll cells and vice
versa.

The stability and dynamics of double-advective, double-diffusive convection
in porous media were studied in Schoofs et al. (1999), for the case in which the
porous medium is heated from below, while chemical concentration provides a
stabilizing influence. The thermal Rayleigh number RaT , the buoyancy ratio Rρ ,
and the porosity φ of the medium were varied systematically. Within the whole set
of experiments, the system evolved to one of the following states: (1) static diffu-
sive, (2) steady convective, (3) oscillatory convective, and (4) chaotic convective.
The system of equations was integrated numerically until one of the stages could
clearly be distinguished. In contrast to the dynamics for an effective porosity of
φ∗ = 0.1, for which most solutions evolve to the static diffusive state, the dynamics
at φ∗ = 0.01 appeared to behave almost intrinsically chaotic.

Except the abovementioned studies, studies of the route to chaos have been
limited to pure thermal convection in a medium heated from below. By means of
solving the full governing equations, Kimura et al. (1986, 1989) showed that the
transition from steady to chaotic convection occurs through a number of bifurca-
tions to multiple periodic regimes. Vadasz and Olek (1999) and Vadasz (1999)
studied the transition to chaos by means of both a truncated Galerkin approxima-
tion, which yields a system equivalent to the familiar Lorenz equations, and the
Adomian’s decomposition method that yields an analytical solution in terms of
infinite power series. Vadasz and Olek (1999) showed that the transition is char-
acterized by a stable solitary limit cycle. They concluded that the transition takes
the form of a Hopf bifurcation. Vadasz (1999) also reports on a hysteresis at the
transition: the critical value of the Rayleigh number is smaller when approaching
the transition from the steady convective to the chaotic regime, as compared to the
value found in the reverse direction.

4. Dynamics at Low Porosity

It is intuitive for the phenomena studied in this paper (transition to chaos and stabil-
ity of interfaces) to describe first the flow dynamics in the chaotic regime. Figure 2
shows the thermal and chemical distributions of a simulation at eight stages during
the evolution, for parameters RaT = 600, Rρ = 1, at = 5 × 10−5, ar = 10, φ∗ = 0.01,
and Lemol = 100. A dark (light) shading indicates a high (low) temperature or
chemical concentration. The spatial numerical resolution used is 64 × 64 grid cells,
based on extensive testing with various spatial and temporal discretizations (see
also §5). The grid cells are refined in vertical direction near the base and the
top of the domain in order to resolve the horizontal boundary layers. The flow
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Figure 2. Temperature and salinity snapshots of a flow with parameters Ra = 600, Rρ = 1.0,
Lemol = 100, φ∗ = 0.01, at = 5 × 10−4, and ar = 10. The corresponding times are (a)
t = 1.2505, (b) t = 1.2641, (c) t = 1.2692, (d) t = 1.2720, (e) t = 1.2848, (f) t = 1.3034, (g)
t = 1.3089, and (h) t = 1.3105. Snapshots (a)–(d) show a transition from a single layered to a
layered system by the formation of an interface, while snapshots (e)–(f) describe the migration
and disappearance of this interface.

appears chaotic during the whole course of the simulation, while it reaches a sta-
tistically steady state at t ≈ 0.2 (for the Nusselt number evolution see Figures 3(c)
and (f). The flow is characterized by frequent transitions between nonlayered and
layered flow patterns.

A typically nonlayered situation is shown in Figure 2(a). The flow pattern ex-
ist of a mixture of advective and (nearly) diffusive areas. The transition from a
nonlayered to layered situation is shown in Figures 2(b)–(d). The formation of
the interface starts with the development of two thermal instabilities in the up-
per left and lower right corners (Figure 2(b)). Fast advective mixing of chemical
concentration within these regions results in (1) the formation of patches with a
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Figure 3. (a)–(c) Temporal evolution of NuT and NuC for three simulations with (a)
Rρ = 0.25, (b) Rρ = 0.4, (c) Rρ = 1.0. Other parameters are Ra = 600, Lemol = 100, φ∗ =
0.01, at = 5 × 10−4, and ar = 10 (modified from Schoofs et al., 1999, with permission).

homogenized solute concentration, and (2) the growth of these patches by con-
vective entrainment. At t = 1.2692 (Figure 2(c)), a highly distorted interface has
developed in between the two areas, that have a different chemical concentration.
Further mixing of the separate patches increases the solute (and thus density) dif-
ference across the interface. As a result, the distortions of the interface flatten until
an almost horizontal interface has evolved (Figure 2(d)).

In Figures 2(e)–(h) the transition from a layered to nonlayered flow pattern
is shown. In Figures 2(e)–(g), the interface is visible as the clustering of several
horizontal isopleths halfway the domain. The interface divides the domain into
two separately convecting layers of another chemical concentration (Figure 2(e)).
When the convective vigor in the lower layer increases, fluid is entrained convec-
tively from above the interface into the lower layer. Consequently, the interface
migrates gradually upward until it merges with the upper boundary layer (Fig-
ures 2(f)–(h)). Both upward and downward moving interfaces were observed. In
Section 6, the stability of the density interfaces is analyzed in more detail.

5. Transition to Chaos

In TCC, several routes through the parameter regime lead to the transition from
steady to chaotic convection. First, a transition from steady to chaotic convection
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through oscillatory flow occurs, by increasing the thermal Rayleigh number and
keeping the buoyancy ratio constant (Rosenberg and Spera, 1992). At least for low
buoyancy ratios, this transition behaves similarly to the one found in pure thermal
convection, the latter studied extensively by Kimura et al. (1986, 1989) and Vadasz
(1999).

Apart from this transition, a transition to chaos occurs when Rρ is increased
while RaT is kept constant. This transition is visible in the evolution of the Nusselt
numbers shown in Figure 3, for parameters RaT = 600 and φ∗ = 0.01 and buoyancy
ratios of Rρ = 0.25, Rρ = 0.4, and Rρ = 1.0. For Rρ = 0.25, the system evolves
quickly to a steady state (Figures 3(a) and (d)). For Rρ = 0.4, both heat and solute
transport become oscillatory after a chaotic initial stage (Figures 3(b) and (e)). The
double-periodic flow behavior is due to slightly instable boundary layers at the top
and bottom of the domain (Schoofs et al., 1999). For Rρ = 1.0, finally, both sur-
face fluxes remain unsteady up to the end of the simulation (Figures 3(c) and (f)).
Furthermore, the time-averaged heat flux is reduced considerably as compared to
the fluxes at a lower chemical contrast, because part of the internal energy which
enters the domain through the bottom is used to transport the denser chemical ele-
ments upwards. Finally, heat and solute fluxes are reduced mostly during periods
in which an interface exists.

The difference between the convective dynamics for the three buoyancy ratios is
further illustrated in the kinetic energy (KE) phase plots and power spectra shown
in Figure 4. Figure 4(a) shows the KE phase plot for Rρ = 0.25. Here, the KE −
∂KE/∂t trajectory spirals into a stable fixed point. Next, Figure 4(b) shows the
KE phase plot for the second case, with Rρ = 0.4. The KE − ∂KE/∂t trajectory
follows an irregular orbit in a broader region of phase space, until it becomes an
almost perfect limit cycle (see the inset at the right top of the figure for a close-up
view of the limit cycle). This suggests that a Hopf bifurcation takes place. Note the
different scales at the vertical axes. Furthermore, the average kinetic energy has
decreased considerably, as compared to that for Rρ = 0.25 at steady state. Finally,
Figure 4(c) displays the KE phase plot for Rρ = 1.0. The KE − ∂KE/∂t trajectory
follows an irregular orbit in an even wider loosely defined region and never reaches
a fixed point or limit cycle.

Figures 4(d)–(f) show the positive part of the corresponding power spectra of
the kinetic energy, for time periods in which the steady, oscillatory or statistically
steady states have been evolved completely. For calculation of the power spectra,
the averages of the signals have been subtracted and a boxcar window has been
used. For Rρ = 0.25, no prevailing frequency is observed (Figure 4(d)). The KE
power spectrum for the oscillatory state, Rρ = 0.4, contains two dominant fre-
quencies (19 and 41) along with their harmonics (Figure 4(e)). Finally, the KE
power spectrum for Rρ = 1.0 is depicted in Figure 4(f). In this case, the spectrum
is characterized by broadband noise. The most dominant frequencies are between
20 and 25. These frequencies correspond with the development and disappearance
of the chemical interfaces.
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Figure 4. (a)–(c) The KE phase plots showing the trajectory in KE− ∂KE/∂t space for
the three experiments shown in Figures 3. (d)–(f) The accompanying positive parts of the
power spectra of the kinetic energy, for periods in which the convection has reached its final
evolutionary state. The average is subtracted from the signal.

The influence of the employed spatial resolution on the transition to chaos is
shown by plotting the kinetic energy KE for several buoyancy ratios around the
critical value on various grids (Figure 5). For decreasing cell size, the transition
between steady and chaotic convection shifts to a lower buoyancy ratio: from
Rρ = 0.5 − 0.6 on a 32 × 32 grid, to Rρ ≈ 0.4 on a 64 × 64 grid, to Rρ ≈ 0.3 on a
128 × 128 grid.

6. Stability of a Density Interface

The formation and evolution of separately convecting layers was studied before
in detail for effective porosities between φ∗ = 1.0 and 0.1 (Schoofs et al., 1998,
2000). In simulations in which an initially linear salinity profile was heated from
below, it was shown that growth of a convective layer at the bottom of the do-
main through convective entrainment, the formation of a stable density interface
on top of the layer and destabilization of the next layer are intimately linked.
By monitoring the heat (solute) fluxes, it was observed that the transport of heat
(solute) across the interface changes from convective entrainment towards a regime
in which transfer is purely diffusive (dispersive). The layer growth stops when the
density interface on top has grown sufficiently strong to keep the ascending plumes
in the lower layer from convectively entraining more fluid from above. A simple
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Figure 5. (a)–(e) Temporal evolution of KE for 15 simulations with various spatial resolution
and for several buoyancy ratios: (a) Rρ = 0.2, (b) Rρ = 0.3, (c) Rρ = 0.4, (d) Rρ = 0.5, and
(e) Rρ = 0.6. Other parameters are similar to those in Figure 3. In two figures, the oscillatory
character of the signal is elucidated by a closeup view.

balance between the most important forces, exerted on the interface, determines
this transition. This force balance is used in the situation studied here, to check the
stability of the interface shown in Figures 2(e)–(h).

In Figure 6, a schematic diagram is shown of the two convective layers and
the intermediate density interface. The forces are defined per unit volume and are
all divided by the factor µ/K (of which the value is defined implicitly with the
Rayleigh number). This scaling is permitted as only the balance between the vari-
ous forces is considered. The interface experiences three forces. First, the upward
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Figure 6. Schematic diagram of two convective layers separated by a density interface. The in-
terface experiences three forces: a viscous drag force of the bottom convective layer Fvisc,bot,
a viscous drag force of the top convective layer Fvisc,top, and a buoyancy force due to the
density difference across the interface Fint.

viscous drag force Fvisc,bot in the bottom layer is defined as the buoyancy of a fluid
parcel within this layer minus the pressure gradient over the parcel, divided by φ∗:

Fvisc,bot = ρ∗ − (∂p/∂z)
φ∗ = (qz)repr

φ∗ , (7)

where Darcy’s law has been used and ρ∗ = RaT (RρC−T ) is the difference between
the buoyancy of the parcel and the buoyancy at the reference state. The factor φ∗
is included in the force, because the solute advects upwards with the vertical pore
velocity qz/φ∗ rather than with qz. The subscript repr denotes that a representative
value of the vertical velocity should be chosen as to represent the viscous drag
force exerted on the interface. Obviously, the vertical velocity becomes negligible
at the interface. Consequently, for a parcel just below the interface the viscous drag
force Fvisc,bot is nearly zero. This can be seen in Figure 7(a), in which the vertical
profiles of both the absolute value of the lateral maximum of the vertical velocity
and the horizontally averaged buoyancy ratio are plotted for the time instances
corresponding with the snapshots in Figures 2(e)–(h). Since only the most vigorous
plumes are able to scrape off the interface, the maximum value of the upward
velocity in the lower layer (divided by φ∗) can be taken as to represent the viscous
drag force exerted by the bottom convective layer:

Fvisc,bot = qz,max,bot

φ∗ . (8)

A similar choice of the viscous drag force has been proven to be successful for
describing the limitation of the layer growth in simulations with φ∗ = 0.1 (Schoofs
et al., 2000).
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Figure 7. (a) Vertical profiles of the lateral maximum of the vertical velocity qz,max and
buoyancy ρ∗ at similar time instants as those of the snapshots (e)–(h) in Figure 2. (b) The
forces depicted in Figure 5, Fvisc,bot, Fvisc,top, Fint, and the resulting forces Fvisc,tot, Ftotal,
plotted as a function of time. (c) Close-up view of (b), but only with Fvisc,tot, Fint, and Ftotal.
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The second force, the downward directed viscous drag force in the upper layer,
is defined in a similar way by

Fvisc,top = qz,max,top

φ∗ . (9)

The third force, finally, is exerted by the density interface itself and is also directed
downwards:

Fint = �ρ∗
int = ρ∗

lower − ρ∗
upper (10)

which is the horizontally averaged buoyancy difference across the interface.
The force balance states that convective entrainment across the interface (which

leads to migration of the interface) occurs when the absolute value of the resultant
of the two viscous drag forces, |Fvisc,tot| = |Fvisc,bot + Fvisc,top| is larger than the
absolute interfacial buoyancy force |Fint|:

|Fvisc,tot| > |Fint|. (11)

The total force, Ftotal, is defined as the result of all forces

Ftotal = Fvisc,bot + Fvisc,top + Fint. (12)

In order to validate the force balance, the forces are plotted as a function of time
(Figures 7(b) and (c)) of an interface which exist between t = 1.283 and t = 1.309.
The downward directed interfacial force Fint gradually decreases with time from 0,
at the start of the interface development, to a minimal value of −270 at t ≈ 1.305.
The absolute values of the viscous drag forces Fvisc,bot and Fvisc,top are not very
accurate at the initial stages of the interface development, in which the interface is
distorted. From the time instant that the interface has developed (t ≈ 1.285), these
forces are between 4 × 103 and 8 × 103; clearly much larger than the interfacial
buoyancy force. The sum of the viscous drag forces, however, is of the same order
of magnitude as the interfacial force: Fvisc,tot falls mostly between 0 and 1200
during this period (see Figure 7(c)). Still, the total viscous drag force becomes
larger than the interfacial force. As predicted from the force balance (Eq. (8)), the
interface is unstable from t ≈ 1.288. Indeed, at that moment the interface starts to
migrate upwards. The migration process is enhanced by the fact that the contrast in
convective vigor between both layers increases, as can be seen by the fast growth
of the total viscous drag force from Fvisc,tot ≈ 1000 at t = 1.287 to Fvisc,tot ≈ 4000
at t = 1.297.

From the results, it can be concluded that two conditions must be met for an
interface to migrate upwards. First, the viscous drag force in the lower layer must
be stronger than in the upper one. Secondly, the interfacial buoyancy force must
be only slightly smaller than the viscous drag force in the lower layer. The con-
vection currents in the lower layer can then entrain fluid across the interface, while
the interface is strong enough to suppress deflections induced by the convection
currents (Schoofs et al., 2000). In case the interface force becomes very small, the
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distorted interface will break down when it touches one of the boundary layers
at the horizontal domain boundaries. For downward migration to occur, evidently,
convection in the upper layer has to be stronger than in the lower layer.

7. Discussion and Conclusions

We have studied the stability and dynamics of TCC in a saturated porous medium
with a porosity of 0.01 by means of numerical simulations of the set of full gov-
erning equations. Focus is both on the transition from steady to chaotic convection
and on the flow dynamics in the chaotic regime for the case the fluid is heated
and salted from below. It is shown that a transition from steady to chaotic flow
occurs when the ratio between chemical and thermal buoyancy is increased, while
the driving thermal buoyancy is kept constant. The transition is attributed to an
increased influence of advective solute transfer over the more moderate convective
heat transfer, the latter actually driving the flow. The observation of a limit cycle at
the transition lead us to suggest, that the transition takes the form of a Hopf bifurca-
tion. The critical buoyancy ratio depends slightly on the chosen spatial numerical
resolution.

The flow pattern in the chaotic regime is characterized by irregular transitions
between nonlayered and layered flow patterns. In the nonlayered mode, the flow
pattern consists of several distinct areas, in which heat and solute transport is
governed either by advection or by diffusion.

In the layered mode, gravitationally stable interfaces divide the domain into
separately convecting layers of different solute concentration. Advective and dis-
persive entrainment across the interfaces results in upward or downward migration
of the interfaces. The interface stability is analyzed in terms of a simple force
balance. The interface is stable when the resultant of the maximum viscous drag
forces in the two adjacent convective layers remains smaller than the buoyancy
force exerted by the interface. For a typical example, the force balance describes
the stability and migration of the interface very well.

The chaotic behavior of the flow evidently leads to an unsteadiness of the heat
and solute transport across the domain. The dominant frequencies in the Nusselt
numbers correspond with the frequency of the formation and disappearance of the
interfaces. During the existence of an interface, heat and solute transport and the
kinetic energy of the flow are all reduced considerably.

It would be interesting to investigate whether the transition from steady to
chaotic convection via an increase in the buoyancy ratio, as found here in a two-
dimensional square domain, does also take place at various aspect ratios and in
three dimensions. It is known that the transition to chaos in three-dimensional ex-
periments of pure thermally driven convection occurs at a lower thermal Rayleigh
number as compared to two-dimensional experiments (Schubert and Strauss, 1979;
Kimura et al., 1989). A similar reduction of the critical Rρ value may exist for the
transition studied here.
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We recognize that our model is only a simple representation of the complex-
ities that arise in geological porous media. The permeability is assumed to be an
isotropic scalar here, and the internal spatial scales of the porous medium are neg-
lected. Furthermore, a simple mass balance and the applicability of Darcy’s law is
assumed, while a Fickian dispersion model is employed. All of these will probably
affect the transition to chaos and the flow dynamics, but they are not within the
scope of this study.

For typical geological parameters for a fractured domain (a domain height of
4 km, �T = 200 K, and K = 6 × 10−14 m2), chaotic convection occurs when the
salinity contrast between top and bottom is approximately 5 wt% or more, at least
for the two-dimensional flow studied here. Considering the large salinity gradients
present within the crust, convection of aqueous fluids appears intrinsically unsteady
within vast volumes of the Earth’s crust.
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