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ABSTRACT
When analyzed using secondary ion mass spectrometry, dust-

sized (<63 µm) zircon in distal ash deposits of the Tierra Blanca 
Joven (TBJ) eruption of Ilopango Volcano (El Salvador) yielded 
results consistent with ages obtained from those in proximal depos-
its. This finding indicates insignificant age sorting of zircon crystals 
during their dispersal in the TBJ ash plume. As a result, analysis 
of zircons may permit reliable source identification of distal tephra 
marker beds commonly found in terrestrial and marine environ-
ments. This technique was applied to test whether an enigmatic vol-
canic ash used to manufacture Late Classic Maya pottery from El 
Pilar is from distal TBJ ash deposits, a hypothesis supported by the 
location, extent, and timing of the TBJ eruption, and the matching 
high silica content and trace element ratios between TBJ glass and 
glass in the archaeological samples. The exclusively older than 1 Ma 
ages of the archaeological zircons compared with the dominantly 
ca. 0–30 ka ages of the TBJ zircons, however, rule out the TBJ erup-
tion as the source of the pottery ash. The three analyzed archaeo-
logical pottery samples define two distinct zircon age distributions, 
indicating that the ash in the Maya pottery must be from multiple 
sources, which currently remain unidentified.

INTRODUCTION
Investigation of fine volcanic ash has become an indispensable tool 

in tephrochronology. The advantage of using zircon crystals, which are re-
sistant to alteration, to directly date and correlate tephra deposits has long 
been recognized (e.g., Compston et al., 1992), but for Quaternary tephra, 
correlation is largely based on glass or mineral chemical indicators (e.g., 
Lowe, 2011). In some cases, fission-track methods have been applied to 
date zircon in late Cenozoic tephra (e.g., Naeser et al., 1981), but these are 
only effective for crystals >75 µm, and the results are generally fraught 
with impractically large uncertainties for ages younger than 100 ka. Zir-
con ages for Quaternary volcanic rocks are now routinely determined by 
U-Th disequilibrium isotopic analysis to address time scales of pre-erup-
tive crystallization and crystal residence (e.g., Reid et al., 1997; Schmitt et 
al., 2006; Claiborne et al., 2010). Most of these studies have targeted large 
zircon crystals, extracted from lava flows and pumice clasts from proximal 
pyroclastic deposits. Here we explore the potential of the small spot size 
and high sensitivity that secondary ion mass spectrometry (SIMS) affords 
for determining the crystallization ages of zircon with the grain size of fine 
ash (dust; <63 µm) recovered from distal ash fallout deposits.

Little is known about zircon sorting during atmospheric dispersal 
of fine ash. If size-controlled differences between age populations were 
absent, then zircon ages could be used for correlating distal deposits with 
their proximal equivalents. This study tests this possibility using tephra 
from the Tierra Blanca Joven (TBJ) eruption (Dull et al., 2001, 2010) of 
Ilopango Volcano, El Salvador. This technique is then applied to evaluate 
the proposed correlation between TBJ tephra and distal ash found as a ma-
jor constituent of Maya pottery manufactured at approximately the same 
time as the eruption that produced the TBJ deposit.

GEOLOGICAL AND GEOARCHAEOLOGICAL BACKGROUND

TBJ Eruption of Ilopango
Ilopango is one of several calderas in the Central American Volcanic 

Arc (CAVA; Fig. 1). Its most recent caldera-forming eruption produced 
the TBJ deposit, which consists of six units, A (oldest) through F (young-
est; Lexa et al., 2011). The TBJ eruption released a massive quantity of 
tephra (18 km3 dense-rock equivalent; Rose et al., 1999), with an estimated 
20–50 cm of ash accumulating more than 100 km to the northwest of Ilo-
pango (Dull et al., 2001). TBJ ash has also been found in lacustrine depos-
its ~175 km to the northeast of Ilopango (Mehringer et al., 2005). Radio-
carbon dating originally placed the TBJ eruption at A.D. 260 ± 114 (1s; 
Sheets, 1983), but new and recalibrated 14C dates vary by ~200 yr (Dull 
et al., 2001; Mehringer et al., 2005; Kitamura, 2010), with exact calendar 
dating confounded by a multivalued 14C age versus calendar age calibration 
curve in the interval of A.D. 440–540 (e.g., IntCal09; Reimer et al., 2009).

Enigmatic Ash in Maya Pottery
Coinciding with the Late Classic Period of Maya civilization (A.D. 

600–900) is the widespread use of volcanic ash as a temper, or stabilizing 
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Figure 1. Map of study area region showing El Pilar archaeologi-
cal site in the Maya lowlands, candidate source volcanoes as de-
termined by location, composition, and eruptive history, includ-
ing Ilopango, in the Central American Volcanic Arc (CAVA), Tierra 
Blanca Joven (TBJ; El Salvador) ash sample locations, and rele-
vant ash-fall isopachs of Ilopango TBJ (after Dull et al., 2001) and 
El Chichón (Mexico) 1982 (after Varekamp et al., 1984) eruptions.
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additive, in pottery from the Maya lowlands (e.g., Ford and Glicken, 1987; 
Ford and Rose, 1995; Fig. 1). Prior to that time, lowland pottery was made 
largely from local, carbonate-rich materials. Explaining the presence of 
volcanic ash in the pottery is problematic. The region lacks nearby vol-
canoes, the closest being 360–410 km distant (Fig. 1), and it is devoid of 
known volcanic deposits containing fresh, unaltered ash. Furthermore, it is 
improbable that small eruptions from distant volcanoes could have provid-
ed the estimated 800 m3/a of ash (Ford and Glicken, 1987) consumed by 
the lowland Maya during the Late Classic Period for pottery manufacture. 
Trade has been proposed as the source of this ash (Simmons and Brem, 
1979; Jones, 1986; Sunahara, 2003), but the large volume used, the steep 
transportation costs associated with the ~300 km distance to the CAVA, 
and the use of human rather than draft animal transportation (Feldman, 
1985; Hassig, 1985), collectively render this explanation implausible. The 
location, extent, and age of the TBJ eruption are all consistent with it being 
the source of the pottery ash (Ford and Spera, 2007), a correlation that has 
been suggested by other researchers (Gifford, 1976; Dull et al., 2001; cf. 
Deevey et al., 1983). Here we show conclusively that this is not the case.

METHODS

Sample Collection and Preparation
TBJ pumice samples (units B, C, E, and F) collected at Ilopango 

caldera are termed proximal, TBJ ash collected near San Salvador (by 
Payson Sheets) are termed intermediate, and an ash collected ~160 km 
from Ilopango (by José Alexander Chavez) is termed distal (Fig. 1). Ex-
cavated Late Classic pottery samples (MAR016, MAR017, and MAR020) 
are from the El Pilar area (Ford, 2004; Fig. 1). We analyzed 14 volcanic-
glass–bearing pottery samples for glass compositions; a subset of 3 was 
selected for zircon extraction from ~10–20-g-sized fragments. Gentle 
hand-crushing produced <250 mm fines, which were reacted with cold 
hydrofluoric acid (HF). Zircon in the residue was separated by density in 
methylene iodide (r = 3320 kg/m3) and hand-picking. The TBJ ash and 
pottery samples both yielded plentiful zircon dust (10–75 µm; average = 
45 µm); zircon picked from proximal pumice included a range of grain 
sizes (45–110 µm).

Glass Composition of Late Classic Maya Pottery Samples by 
Electron Beam and Laser Ablation–Inductively Coupled Plasma–
Mass Spectrometry Analysis

Thin sections of the archaeological samples show that glass shards 
range in size from ~50 mm to 375 mm (average ~125 mm), and compose 
~40%–50% of the fired clay matrix by volume. There are no signs of 
chemical or mechanical degradation of the glass shards; all maintain the 
cuspate shape of fresh volcanic ash. Glass composition (Si, Al, Fe, Na, 
K, Ca, Mg, Mn, and Ti) was analyzed in at least 15 different shards per 
sample (Table DR3 in the GSA Data Repository1) using electron probe 
microanalysis (EPMA) at the University of California–Santa Barbara 
(UCSB). For comparison, glass adherent to zircon was analyzed using 
energy-dispersive X-ray analysis at the University of California–Los An-
geles (UCLA). Subsequent to EPMA, trace element concentrations (Rb, 
Sr, Y, Zr, Nb, Ba, La, Ce, Nd, Yb, Hf, Ta, Th, and U) were determined in 
situ by laser ablation–inductively coupled plasma–mass spectrometry at 
Oregon State University (Salisbury et al., 2012) and averaged per sample 
from ~20 glass shard analyses at ~5 locations (Table DR3).

SIMS Analysis
U-Th disequilibrium analyses were performed with a CAMECA 

ims1270 at UCLA, modifying the protocols of Schmitt et al. (2006) by 

using 99.999% aluminum (Al) as the mounting medium for zircon dust 
(Fig. 2A), rather than indium (In) or epoxy. The absence of interferences 
with the 230ThO+ peak when the analysis spot (~50 µm in diameter) over-
laps onto Al was demonstrated by the analysis of small, Al-mounted frag-
ments of secular equilibrium zircon AS3, which yielded (230Th)/(238U) = 
1.018 ± 0.022 (mean square of weighted deviates = 1.2; n = 8). A subset 
of the archaeological zircons was also analyzed in situ in sectioned and 
polished pottery (Fig. 2B). Disequilibrium crystallization ages were calcu-
lated as two-point isochrons combining the average (230Th)/(238U) whole-
rock value of 1.03 for TBJ pumice determined by Garrison et al. (2012) 
with zircon values. Zircons within error of secular equilibrium (the upper 
limit of disequilibrium dating, ca. 300 ka) were subsequently U-Pb dated 
following the protocols in Schmitt et al. (2003).

RESULTS

Zircon Geochronology
Overall, U-Th zircon rim ages range between ca. 0 ka and 250 ka 

in both the proximal pumice and the intermediate and distal ash samples 
(Fig. 3A). The ages are independent of grain size, and lack systematic 
differences between TBJ subunits, although some subunits were only 
sampled at a reconnaissance level (Table DR1). Collectively, the zircon 
age populations for the proximal pumice and the combined intermediate 
and distal ash TBJ samples are statistically identical, as indicated by Kol-
mogorov-Smirnov testing, which yields a probability of identity P = 0.20 
(P = 0.05 being the level of acceptance; Fig. 3A). By contrast, El Pilar pot-
tery zircons, including zircons with adherent glass analyzed in situ, lack 
evidence for disequilibrium, and are thus clearly distinct from the majority 
of TBJ zircons. Pottery U-Pb zircon ages range from ca. 1 Ma to 1324 Ma. 
The U-Pb zircon age populations from samples MAR016 and MAR017 
closely overlap, but are distinct from those of MAR020 (Fig. 3B).

Glass Composition
The silica contents of the TBJ volcanic glass (77.0 ± 0.1 wt%, n = 

3; Mehringer et al., 2005) and the El Pilar pottery samples (78.0 ± 1.1 
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Figure 2. A: Zircon from 
sample of distal Tierra 
Blanca Joven (El Salva-
dor) ash, mounted in alu-
minum (Al) with remnants 
of gold (Au) coating. B: 
Zircon partially encased 
in shard of volcanic glass 
in a Late Classic Maya 
pottery sample (MAR016). 
Both zircons were partly 
obliterated by secondary 
ion mass spectrometry 
analysis (analysis spot 
outlined in white).

1GSA Data Repository item 2014207, Table DR1 (U-Th disequilibrium zircon analyses), Table DR2 (U-Pb zircon analyses), and Table DR3 (major and trace ele-
ment abundances in glass from El Pilar pottery), is available online at www.geosociety.org/pubs/ft2014.htm, or on request from editing@geosociety.org or Documents 
Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.
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wt%, n = 1054; this study) are similar, and higher than for most CAVA 
volcanoes (Rose et al., 1999). Equivalently high silica was measured in 
adherent glass on zircon crystals in pottery samples (Fig. 2B; Table DR3). 
Major elements in the pottery glass, however, were previously found to be 
modified by the temperature and duration of firing in controlled labora-
tory firing studies (Catlin, 2008). While all trace elements except Rb were 
depleted during firing, the ratios of Zr and rare earth elements (La, Ce, 
and Nd) in glass remained essentially unchanged by ceramic firing, and 
were used to fingerprint and characterize the original (pre-firing) glass 
compositions (Fig. 4). On a graph of Zr/Nd against Ce/La, glass shards 
in 14 pottery samples from El Pilar plot into two major clusters (Fig. 4). 
Glass analyses with comparatively high Zr/Nd (e.g., MAR020) overlap 
within uncertainty with published TBJ glass compositions (Kutterolf et 
al., 2008).

DISCUSSION AND CONCLUSIONS

Zircon as a Tephrochronological Correlation Tool
Despite its high density (r = 4650 kg/m3), zircon dust is abundant in 

distal ash deposits, as seen in the TBJ and Maya pottery samples. This is 
expected, as faster settling due to zircon’s higher density is compensated 
for by its comparatively small crystal size. Stokes’ law settling times for 
volcanic glass particles (r = 2300 kg/m3) and zircons are hydraulically 
equivalent if the zircon crystal radii are ~40% of those of the glass particles.

Homogeneous zircon rim ages in both the ash and proximal pum-
ice samples of the TBJ indicate that the eruption tapped a reservoir that 
was well mixed with regard to zircons. This finding does not address the 
possibility that larger crystals may record more protracted crystallization, 
but demonstrates that zircon rim ages can be used successfully to cor-
relate distal tephra with proximal counterparts. Zircon rim ages are also 
uniformly distributed in the TBJ subunits, making the possibility of age 
variation in different distal tephra lobes unlikely.

Zircon geochronology can thus radically improve tephrostratigraphy 
in regions where ash layers are affected by alteration, and/or where an 
abundance of compositionally similar glass or minerals hinders tephra 
identification. There is a wide range of potential applications, including 

correlation of thin terrestrial ash beds, tephra in lake and ocean sediment 
cores, and even in pottery and other archaeological materials.

Maya Pottery Ash Provenance
Examining silica contents of the volcanic glass in the pottery sam-

ples, strong similarities to those of the TBJ ash are apparent. Trace ele-
ment ratios in pottery sample MAR020 are also broadly similar to the 
TBJ, albeit those in MAR16 and MAR17 are not (Fig. 4). At first glance, 
major and trace element similarities would implicate the TBJ as a po-
tential source for at least some El Pilar ash temper, but there are severe 
ambiguities in such a correlation based solely on glass compositions: (1) 
firing experiments conducted at UCSB (Catlin, 2008) show that silica 
and aluminum remains unchanged while sodium decreases and calcium 
increases at a firing temperature >825 °C; trace elements except for Rb 
decrease with firing (Catlin, 2008); (2) the variability of trace element 
ratios implies that multiple sources of chemically heterogeneous glasses 
were used to make the pottery; and (3) trace element ratios have limited 
discriminatory power, evident from the broad compositional similarities 
between TBJ and average continental crust (Fig. 4).

SIMS analysis of pottery zircons, by contrast, reveals distinct age 
patterns that provide a robust and characteristic fingerprint for correlation. 
Because in-situ zircons adhered to volcanic glass yield ages that are within 
the distributions of the HF-separated zircons, we have confidence that the 
majority of the zircons in the El Pilar pottery samples are volcanic rather 
than detrital, and thus significant in the quest for identifying the origin 
of the ash. A subset of the sampled zircons, however, is likely detrital, 
derived from clay that was mixed with the ash to make the pottery. Among 
these are the 11 ages older than 30 Ma (Fig. 3B) that match characteristic 
peaks in the regional detrital and basement zircon age distribution (Mar-
tens et al., 2010). On the basis of zircon age differences between the ar-
chaeological and geological samples, the TBJ eruption can be confidently 
ruled out as the source of the pottery ash. Eruptions from El Chichón Vol-
cano (Mexico) (Fig. 1) can also be dismissed based on petrography (Ford 
et al., 2014) and preliminary zircon results (Table DR1).
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Figure 3. Relative probability distributions of zircon crystallization 
ages. A: Tierra Blanca Joven (TBJ) pumice (proximal TBJ; units B, 
C, E, and F), TBJ ash (intermediate and distal TBJ), and pottery sam-
ples MAR016 and MAR020, which are within error of secular equilib-
rium. Ages were determined by U-Th disequilibrium dating. B: Pot-
tery samples MAR016, MAR017, and MAR020. Ages were determined 
by U-Pb dating.

Figure 4. Relative probability plot of Zr/Nd and Ce/La refractory trace 
element ratios for glass shards in 14 El Pilar (Maya lowlands) pottery 
samples. The three MAR samples studied for zircon are identified as 
symbols with error bars (SD—standard deviation) commensurate to 
in-run and standard laser ablation–inductively coupled plasma–mass 
spectrometry analytical uncertainties. Tierra Blanca Joven (TBJ) 
glass (Kutterolf et al., 2008) and average continental crust (Taylor and 
McLennan, 1995) are plotted for comparison. The two possible trace 
element groups are consistent with differences in zircon characteris-
tics between MAR020 and the pair MAR016 and MAR017.
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The different U-Pb zircon age distributions in El Pilar pottery samples 
(Fig. 3B) underscore that at least two distinct sources contributed ash for 
ceramic manufacturing, in agreement with the heterogeneities in Zr/Nd 
versus Ce/La (Fig. 4). The dust-sized zircons in the pottery are consistent 
with an origin as distal ash, and their pre-Holocene ages might indicate that 
the ash was gathered from pre-Holocene ash deposits. No such outcrops, 
however, have currently been identified in the area despite a search over the 
past four decades (e.g., Simmons and Brem, 1979), and the preservation of 
fresh glass would be remarkable for such an ancient distal deposit. Alter-
natively, the pottery ash could be from unidentified young eruptions that 
contained exclusively xenocrystic zircons. Renewed field studies aimed at 
locating ash deposits in the region, together with additional analyses of 
pottery samples and ash from various CAVA volcanoes that are suitable 
candidates based on eruption ages, style, and composition, are proposed as 
essential steps toward answering this vexing problem.
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